www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Nerode-Äquivalenzklassen
Nerode-Äquivalenzklassen < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nerode-Äquivalenzklassen: sie zu bestimmen aus Reg. Ausd
Status: (Frage) beantwortet Status 
Datum: 20:01 Mo 28.08.2006
Autor: nureinefrage

Aufgabe
Wandele einen Regulären Ausdruck, z.B. (1((10*2)* + 0*)2 + 0*)*, in einen DFA minimaler Größe um. Bestimme dafür zuvor die Nerode-Äquivalenzklassen.

Hallo, ich weiß zwar wie die Nerode-Relation definiert ist, habe aber leider allgemein keine Ahnung wie man aus einem regulären Ausdruck die Äquivalenzklassen bestimmt.
Wär super, wenn mir da jemand helfen könnte.

Viele Grüße Julia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nerode-Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Di 29.08.2006
Autor: mathiash

Hallo und guten Morgen Julia,

Du könntest so vorgehen:

Konstruier Dir erst mal einen NFA fuer die Sprache (mal ihn ruhig hin, d.h. sein Zustandsdiagramm). Das sollte gut gehen.

Dann bezeichne zu zwei bel. Zuständen [mm] s_1,s_2 [/mm] des konstruierten Automaten [mm] L(s_1,s_2) [/mm] die Menge aller Woerter x aus [mm] \{0,1,2\}^*, [/mm]
so dass der Automat, wenn er in Zustand [mm] s_1 [/mm] startet und das Wort x liest, am Ende in Zustand [mm] s_2 [/mm] gelangen kann (d.h. es gibt einen Pfad im
Zustandsdiagramm von [mm] s_1 [/mm] nach [mm] s_2, [/mm] dessen Kanten mit x beschriftet sind).

Sei F die Endzustandsmenge des Automaten, dann nennen wir zwei Zustaende [mm] s_1, s_2 [/mm] aequivalent genau dann, wenn fuer jedes Wort x gilt:
Es gibt einen x-Pfad von [mm] s_1 [/mm] nach F genau dann, wenn es einen x-Pfad von [mm] s_2 [/mm] zu F gibt, d.h.

[mm] L(s_1,F):=\bigcup_{t\in F}L(s_1,t)\:\:\: =\:\:\: L(s_2,F) [/mm]

Sei [mm] s_0 [/mm] der Startzustand des Automaten. Dann gilt:
Die Vereinigungen

[mm] \bigcup_{s'\:\:äquivalent\:\: zu\:\: s} L(s_0,s') [/mm]

sind die Äquivalenzklassen der Nerode-Relation, und Du solltest den minimalen Automaten erhalten, indem Du bei obigem Automaten alle
äquivalenten Zustände zu je einem kontrahierst.

Frohes Schaffen wünscht

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]