www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Nachweis einer Basis
Nachweis einer Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Fr 23.01.2009
Autor: Muemo

Aufgabe
Gegeben sind die Vektoren [mm] a=5e_{1}-3e_{2}-2e_{3}, b=2e_{1}+2e_{2}-3e_{3}, c=e_{1}+4e_{2}+2e_{3}. [/mm] Man zeige, daß diese Vektoren eine Basis bilden.

Hallo,

ich soll die Basis von den 3 Vektoren nachweisen und weiß leider nicht wie. Ich glaube es scheitert daran, dass ich eine Basis nicht genau definieren kann. Ich hab versucht zu zeigen, dass die Vektoren linear abhängig sind? Für den Fall, dass sie es sind bilden sie eine Basis oder lieg ich damit komplett falsch? Würde mich sehr freuen, wenn mir jemand beim Ansatz helfen könnte.

Vielen Dank im Vorraus.

MfG Flo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nachweis einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Fr 23.01.2009
Autor: angela.h.b.


> Gegeben sind die Vektoren [mm]a=5e_{1}-3e_{2}-2e_{3}, b=2e_{1}+2e_{2}-3e_{3}, c=e_{1}+4e_{2}+2e_{3}.[/mm]
> Man zeige, daß diese Vektoren eine Basis bilden.


Hallo,

[willkommenmr].

Ich vermute, daß Du einige Informationen verschwiegen hast, könnte das sein?

Ich stelle mir die Sache so vor, daß es um den [mm] \IR^3 [/mm] geht, und daß [mm] (e_1, e_2, e_3) [/mm] eine Basis des [mm] \IR^3 [/mm] ist.

Nun sind drei Vektoren a, b, c wie oben definiert, und Du sollst zeigen, daß sie auch eine Basis des [mm] \IR^3 [/mm] bilden.

Hab' ich richtig geraten?  Ich gehe davon aus, daß es so ist.

Der [mm] \IR^3 [/mm] hat die Dimension 3, dh. jede seiner Basen hat drei Elemente.

Insofern könnte (!) es sein, daß (a,b,c) eine Basis ist, und Du liegst völlig richtig damit, daß man nun die lineare Unabhängigkeit der drei Vektoren nachweisen muß.

Was ist dazu zu tun?  Du mußt prüfen, ob aus  [mm] \lambda [/mm] a + [mm] \mu [/mm] b + [mm] \nu [/mm] c=0 folgt, daß [mm] \lambda=\mu=\nu [/mm] =0 gilt.

Auf geht's:

[mm] \lambda [/mm] a + [mm] \mu [/mm] b + [mm] \nu [/mm] c=0

==>  nun die Ausdrücke von oben einsetzen, anschließend nach [mm] e_1, e_2, e_3 [/mm] sortieren, also so:   [mm] (...)e_1 [/mm] + [mm] (...)e_2 [/mm] + [mm] (...)e_3=0. [/mm]

Wenn Du so weit bist, gilt es zu bedenken, daß  [mm] (e_1, e_2, e_3) [/mm] eine Basis ist, also linear unabhängig. Hieraus kannst Du Schlüsse ziehen.

leg mal los, wenn Du soweit bist, hilft Dir gewiß jemand weiter.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]