www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nachweis bijektiv
Nachweis bijektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Mo 25.10.2004
Autor: KingSebtor

Weisen sie nach, dass die Abbildung  f(n)   [mm] \IN \to \IZ [/mm] gemäß:


            - [mm] \bruch{(n-1)}{2} [/mm]            falls n ungerade
f(n):=     [mm] \bruch{n}{2} [/mm]                 falls n gerade


bijektiv ist und geben sie die umkehrabbildung an!



tja das ist die aufgabe habe keinen schimmer wie ich die lösen soll habe schon vieles probiert!

vielleicht kann mir mal bitte die aufgabe vorrechnen!

Danke

        
Bezug
Nachweis bijektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 25.10.2004
Autor: KingSebtor

das " -  "  soll für den ganzen bruch stehen!

naja muss noch etwas über mit dem editor :-)

Bezug
        
Bezug
Nachweis bijektiv: Bijektivität
Status: (Antwort) fertig Status 
Datum: 09:19 Di 26.10.2004
Autor: Gnometech

Guten Morgen KingSebtor!

Die Hinweise vom letzten Mal scheinen noch nicht gereicht zu haben... also nun etwas konkreter:

Sei $f: [mm] \IN \to \IZ$ [/mm] definiert durch:

$f(n) := [mm] -\frac{n-1}{2}$ [/mm] falls $n$ ungerade
$f(n) := [mm] \frac{n}{2}$ [/mm] falls $n$ gerade

Um diese Abbildung geht es. Zeigen wir zunächst die Injektivität.

Seien also $m,n [mm] \in \IN$ [/mm] gegeben mit $f(n) = f(m)$. Als erstes stellen wir fest, dass falls $n$ ungerade, so folgt $f(n) [mm] \leq [/mm] 0$ aus der Definition von $f$. Und falls $n$ gerade, so folt automatisch $f(n) > 0$ aus der gleichen Definition.

Da ja $f(m) = f(n)$ vorausgesetzt ist, müssen entweder $m$ und $n$ beide ungerade oder beide gerade sein.

Fall 1: $m$ und $n$ sind ungerade.

Dann gilt:

[mm] $-\frac{n-1}{2} [/mm] = - [mm] \frac{m-1}{2} \Leftrightarrow [/mm] n-1 = m-1 [mm] \Leftrightarrow [/mm] n = m$.

Fall 2: $m$ und $n$ sind beide gerade.

Dann aber gilt:

[mm] $\frac{n}{2} [/mm] = [mm] \frac{m}{2} \Leftrightarrow [/mm] m = n$.

In beiden Fällen sind wir fertig.

Zur Surjektivität: Sei $z [mm] \in \IZ$ [/mm] beliebig vorgegeben. Gesucht ist ein $n [mm] \in \IN$ [/mm] mit $f(n) = z$.

Fall 1: $z > 0$

Dann definiere $n := 2z [mm] \in \IN$. [/mm] Damit ist $n$ gerade und die Definition von $f$ liefert: $f(n) = [mm] \frac{n}{2} [/mm] = [mm] \frac{2z}{2} [/mm] = z$

Fall 2: $z [mm] \leq [/mm] 0$

In dem Fall definiere $n := -(2z - 1)$. Denn aus $z [mm] \leq [/mm] 0$ folgt $2z -1 [mm] \leq [/mm] -1$ und damit $n [mm] \geq [/mm] 1$, also $n [mm] \in \IN$. [/mm]

Außerdem ist $n$ sicher ungerade ($n = -2z + 1$) und daher folgt:

$f(n) = [mm] -\frac{n-1}{2} [/mm] = - [mm] \frac{-2z}{2} [/mm] = z$.

Damit ist der Beweis der Surjekitivität abgeschlossen.

Die Umkehrabbildung steckt ebenfalls im Beweis versteckt. Ist es jetzt klarer geworden? Schwer ist es nicht, eigentlich nur einsetzen der Definitionen... :-)

Also, sollte noch etwas unklar sein, frag einfach nach.

Lars


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]