www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - N in Abhänhigkeit von epsilon
N in Abhänhigkeit von epsilon < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

N in Abhänhigkeit von epsilon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 17.11.2013
Autor: Lila_1

Aufgabe
Bestimmen Sie dass zu [mm] \varepsilon [/mm] = [mm] 10^{-6}, [/mm] eine Zahl N, sodass [mm] |\bruch{2n}{n+2}+2^{-n}-2| [/mm] < [mm] \varepsilon [/mm] für n [mm] \ge [/mm] N.

Wenn ich die Gleichung auf den gemeinsamen Nenner bringe,  dann habe ich
[mm] \bruch{2^{-n}n+4^{-n}-4}{n+2} [/mm] < [mm] \varepsilon [/mm]
durch kürzen:
[mm] 2^{-n}+ \bruch{4}{n+2} [/mm] < [mm] \varepsilon [/mm]

Ich weiß, dass ich das nach n auflösen muss, aber komme hier nicht mehr weiter.  Könnt ihr mir sagen wie ich  nach n auflösen kann ?

        
Bezug
N in Abhänhigkeit von epsilon: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 17.11.2013
Autor: Valerie20


> Bestimmen Sie dass zu [mm]\varepsilon[/mm] = [mm]10^{-6},[/mm] eine Zahl N,
> sodass [mm]|\bruch{2n}{n+2}+2^{-n}-2|[/mm] < [mm]\varepsilon[/mm] für n [mm]\ge[/mm]
> N.
> Wenn ich die Gleichung auf den gemeinsamen Nenner bringe,
> dann habe ich
> [mm]\bruch{2^{-n}n+4^{-n}-4}{n+2}[/mm] < [mm]\varepsilon[/mm]

[notok] ich erhalte etwas anderes.


> Ich weiß, dass ich das nach n auflösen muss, aber komme
> hier nicht mehr weiter. Könnt ihr mir sagen wie ich nach
> n auflösen kann ?

Zunächst mal musst du den Term abschätzen, um ein [mm] $n_0$ [/mm] angeben zu können, für das deine Ungleichung erfüllt ist.

Hier musst du nach oben abschätzen.
Beispiel:

Soll [mm] $\frac{n^2}{n^3+1}<\epsilon$ [/mm] sein, so ist es doch erst recht
[mm] $\frac{n^2}{n^3+n^3}<\epsilon$ [/mm]

Hier könntest du nun zum Beispiel ein n angeben für das die Ungleichung gilt.

Valerie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]