www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - NS von rationalen Fkt.
NS von rationalen Fkt. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NS von rationalen Fkt.: Frage
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 04.02.2005
Autor: searchgirl

Hallo,
ich habe da ein kleines Problem. Ich habe mir mal mein Mathebuch angeschaut und mich mal mit der Nullenstellenbestimmung von rationalen Funktionen beschäftigt.
Aber dabei ist folgendes Problem aufgetreten:
bei einem Term:
[mm] x^3 -6x^2 [/mm] +12x-9

kann man die Nullstellen nur herausfinden, indem ja diesen Term zerlegt.
also sozusagen in (x-x0)*fr(x)
x0=Nullstelle
um fr(x) herauszubekommen
muss man ja den term  [mm] x^3 -6x^2 [/mm] +12x-9 durch (x-x0) teilen.
x ist ja nicht gegeben, dass ist ja klar, aber woher bekomme ich x0 rechnerisch heraus, das geht doch eigentlich nur zeichnerisch?! oder
nach der Antwort hier im Buch ist (x-x0)= (x-3)
aber woher kommt die 3???????

Achso und noch was:
Die Polynomdivision verstehe ich ja, aber was passiert bei einer Gleichung die einen Rest hervorruft?
wie wird dieser Rest in die Gleichung eingebracht, einfach mit R = ....?
Und wie berechnet man denn mit einem Rest die Nullstellen?

danke, für jegliche Antworten?


        
Bezug
NS von rationalen Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 04.02.2005
Autor: Max

Zu 1.

Man muss diese erste Nullstelle raten, dass man evtl. besser raten kann, wenn man den Graphen kennt ist natürlich richtig. In der Schulmathematik ist es aber üblich, dass die Aufgaben so gestellt werden, dass mindestens eine Nullstelle ganzzahlig ist, damit man durch Raten zum Erfolg kommt. Wenn du [mm] $x_0=3$ [/mm] räst und einsetzt kannst du ja die Kontrolle rechen:

$f(3)= [mm] 3^3 -6\cdot 3^2 +12\cdot [/mm] 3-9=0$ [ok]


Zu 2.

Es gilt, wenn $p(x)$ ein Polynom $n$-ten Grades ist und [mm] $p(x_0)=0$, [/mm] dann gibt es ein Polynom $q(x)$ vom Grad $n-1$ mit

[mm] $p(x)=(x-x_0)q(x)$ [/mm]

D.h. wenn du die richtig Nullstelle rätst, muss darf bei der Polynomdivision kein Rest entstehen.

Bezug
                
Bezug
NS von rationalen Fkt.: Rückmeldung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Fr 04.02.2005
Autor: searchgirl

alles klar,
danke nochmal für die Infos
gruß
searchgirl

Bezug
                
Bezug
NS von rationalen Fkt.: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Fr 04.02.2005
Autor: dominik

Das Erraten einer Nullstelle kann folgendermassen "gesteuert" werden:
Als Lösungen kommen nur Teiler der Konstanten in Frage, hier also die positiven und negativen Teiler von 9:  [mm] \pm1, \pm3 [/mm] oder  [mm] \pm9 [/mm]
Wie Brackhaus gezeigt hat, kommt durch Probieren und Kontrollieren 3 als Lösung in Frage.

Nun muss das Polynom durch x-3 dividiert werden. Weil - wie schon erwähnt - die erste Lösung zutrifft, geht die Division auf:
[mm](x^3-6x^2+12x-9):(x-3)=x^2-3x+3[/mm].
Nun hat aber die Gleichung [mm]x^2-3x+3=0[/mm] keine Lösung.
Damit hat die Funktion nur diese eine Nullstelle.
[Dateianhang nicht öffentlich]

Viele Grüsse
dominik

Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]