www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Multiplikation kompl. Matrizen
Multiplikation kompl. Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation kompl. Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Do 27.07.2006
Autor: wenbockts

Aufgabe
Berechnen sie das Produkt der folgenden komplexen Matrizen A und B
A=  [mm] \pmat{ 1+2j & 3-j \\ 2-2j & 1+j } [/mm]
B=  [mm] \pmat{ j & 5-j \\ 2 & 1-j} [/mm]

Komm einfach nicht aufs Ergebnis. Ich weiß wie man 2 normale Matrizen miteinander multipliziert... (also Zeilen der ersten mal Spalten der zweiten), das klappt auch bei jeder Matrix, nur hier versteh ich es nicht.. Die Lösung lautet:
C=  [mm] \pmat{ 4-j & 9+5j \\ 4+4j & 10-12j } [/mm]

Aber wenn ich das doch so mache wie bei den normalen Matrizen müsste ich doch auch [mm] j^2 [/mm] in der Matrix stehen haben oder wie rechnet man das?

        
Bezug
Multiplikation kompl. Matrizen: j^2=-1
Status: (Antwort) fertig Status 
Datum: 11:26 Do 27.07.2006
Autor: Bastiane

Hallo!

> Berechnen sie das Produkt der folgenden komplexen Matrizen
> A und B
>  A=  [mm]\pmat{ 1+2j & 3-j \\ 2-2j & 1+j }[/mm]
>  B=  [mm]\pmat{ j & 5-j \\ 2 & 1-j}[/mm]
>  
> Komm einfach nicht aufs Ergebnis. Ich weiß wie man 2
> normale Matrizen miteinander multipliziert... (also Zeilen
> der ersten mal Spalten der zweiten), das klappt auch bei
> jeder Matrix, nur hier versteh ich es nicht.. Die Lösung
> lautet:
>  C=  [mm]\pmat{ 4-j & 9+5j \\ 4+4j & 10-12j }[/mm]
>  
> Aber wenn ich das doch so mache wie bei den normalen
> Matrizen müsste ich doch auch [mm]j^2[/mm] in der Matrix stehen
> haben oder wie rechnet man das?

Wenn du ganz normal rechnest, erhältst du:

[mm] \pmat{j+2j^2+6-2j&5-j+10j-2j^2+3-3j-j+j^2\\2j-2j^2+2+2j&10-2j-10j+2j^2+1-j+j-j^2} [/mm]

Da hier anscheinend j für die imaginäre Einheit steht und demnach [mm] j=\wurzel{-1} [/mm] gilt, folgt [mm] j^2=-1, [/mm] womit sich diese ganze Matrix dann zu

[mm] \pmat{-j+4&5j+9\\4j+4&-12j+10} [/mm]

vereinfacht. Und das ist genau das, was rauskommen soll. :-)

Viele Grüße
Bastiane
[cap]




Bezug
                
Bezug
Multiplikation kompl. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Do 27.07.2006
Autor: wenbockts

Ach.. mann bin ich verwirrt...bin schon viel zu lang am Lernen, so dass ich eigentlich einfach Sachen net mehr raff.. aber 1000 Dank fürs "auf die Sprünge helfen" =)
LG Ina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]