www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Multiplikation Matrix
Multiplikation Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation Matrix: Rückfrage, Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 11:24 Fr 29.12.2017
Autor: Dom_89

Aufgabe
Gegeben sind

A = [mm] \pmat{ 1 & 1 & -1 \\ 2 & 0 & 1 } [/mm] und B = [mm] \pmat{ 1 & 1 \\ 2 & -1 } [/mm]

Bilde die Verkettung [mm] A_{BoA} [/mm]

Hallo,

laut Lösung soll hier [mm] A_{BoA} [/mm] = [mm] \pmat{ 3 & 1 & 0 \\ 0 & 2 & -3 } [/mm] herauskommen.

Das Vorgehen ist mir soweit bekannt und war bisher auch kein Problem.

Ich habe ja eine 2x3 und eine 2x2 Matrix. Eigentlich kann ich die beiden doch nun nur miteinander multiplizieren, wenn die Spaltenanzahl der ersten Matrix gleich der Zeilenanzahl der zweiten Matrix ist.

Mein Ergebnis müsste doch dann eine 2x2 Matrix sein.

Beides ist hier nicht zutreffend. Gibt es für solche Fälle etwas zu beachten bzw. ein ganz anderes Vorgehen?

Vielen Dank für die Hilfe

        
Bezug
Multiplikation Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Fr 29.12.2017
Autor: Event_Horizon

Hallo!


> Ich habe ja eine 2x3 und eine 2x2 Matrix. Eigentlich kann ich die beiden doch nun nur miteinander multiplizieren, wenn die Spaltenanzahl der ersten Matrix gleich der Zeilenanzahl der zweiten Matrix ist.

Das ist richtig, und ist in deinem Fall doch auch gegeben:

[mm] $B\circ [/mm] A = [mm] \pmat{ 1 & 1 \\ 2 & -1 } \circ \pmat{ 1 & 1 & -1 \\ 2 & 0 & 1 }$ [/mm]

> Mein Ergebnis müsste doch dann eine 2x2 Matrix sein.

Nein.
Die 3x2-Matrix A ist eine Abbildung [mm] $\IR^3 \mapsto \IR^2 [/mm] $, und die 2x2-Matrix B [mm] $\IR^2 \mapsto \IR^2 [/mm] $. Die Verkettung macht demnach [mm] $\IR^3 \mapsto \IR^2 \mapsto \IR^2 [/mm] $, also zusammen auch wieder [mm] $\IR^3 \mapsto \IR^2 [/mm] $.
Demnach ist das Ergebnis auch eine 3x2-Matrix.






Bezug
        
Bezug
Multiplikation Matrix: Schreibweise der Verkettung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Fr 29.12.2017
Autor: Al-Chwarizmi


> Gegeben sind
>  
> A = [mm]\pmat{ 1 & 1 & -1 \\ 2 & 0 & 1 }[/mm] und B = [mm]\pmat{ 1 & 1 \\ 2 & -1 }[/mm]
>  
> Bilde die Verkettung [mm]A_{BoA}[/mm]



Hallo Dom_89

Mich irritiert hier die seltsame Bezeichnungsweise    

                   [mm]A_{BoA}[/mm]

für die Verkettung, die man doch üblicher- und
sinnvollerweise einfach als  [mm]B\, o\, A[/mm]  schreibt.
Für die Summe zweier Zahlenwerte a und b schreibt man
ja auch nicht etwa sowas wie   [mm]S_{a+b}[/mm]  !

LG ,   Al-Chw.

Bezug
        
Bezug
Multiplikation Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Sa 30.12.2017
Autor: Diophant

Hallo,

> Gegeben sind

>

> A = [mm]\pmat{ 1 & 1 & -1 \\ 2 & 0 & 1 }[/mm] und B = [mm]\pmat{ 1 & 1 \\ 2 & -1 }[/mm]

>

> Bilde die Verkettung [mm]A_{BoA}[/mm]
> Hallo,

>

> laut Lösung soll hier [mm]A_{BoA}[/mm] = [mm]\pmat{ 3 & 1 & 0 \\ 0 & 2 & -3 }[/mm]
> herauskommen.

>

> Das Vorgehen ist mir soweit bekannt und war bisher auch
> kein Problem.

>

> Ich habe ja eine 2x3 und eine 2x2 Matrix. Eigentlich kann
> ich die beiden doch nun nur miteinander multiplizieren,
> wenn die Spaltenanzahl der ersten Matrix gleich der
> Zeilenanzahl der zweiten Matrix ist.

>

> Mein Ergebnis müsste doch dann eine 2x2 Matrix sein.

Event_Horizon hat dir die Frage ja schon beantwortet und für seine Antwort die Tatsache verwendet, dass jede reelle Matrix (genauer: jede Matrix, die aus Elementen eines Körpers K zusammengesetzt ist) sich als lineare Abbildung auffassen lässt.

Für die Matrizen-Multiplikation kann man aber auch ganz praktisch über die Definition derselben argumentieren: wie du richtig gesagt hast müssen Spaltenzahl der linken und Zeilenzahl der rechten Matrix übereinstimmen. Mit der gleichen Logik sieht man damit sofort ein, dass das Produkt

- die Zeilenzahl der linken und
- die Spaltenzahl der rechten Matrix

aufweist. Also in deinem Fall wieder eine 2x3 Matrix.

Mache dir an Hand dieses Beispiels klar, dass für [mm] A\in{K^{mxm}} [/mm] und [mm] B\in{K^{mxn}} [/mm] das Produkt A*B wieder eine Matrix aus [mm] K^{mxn} [/mm] ist.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]