www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Monotonie einer Folge
Monotonie einer Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 So 14.03.2010
Autor: Dr.Prof.Niemand

Hi,
ich habe eine Folge von der ich weiß, dass sie monoton fällt, aber ich bekomme es nicht hin das zu beweisen.
[mm] a_{k} [/mm] = [mm] (k+1)^{\bruch{1}{4}} [/mm] - [mm] k^{\bruch{1}{4}} [/mm]
Vielleicht hat ja jemand eine Lösung oder einen Tipp zur Bearbeitung.
Freue mich echt über alles, dass mir zur Lösung weiterhilft.

LG
Prof

        
Bezug
Monotonie einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 14.03.2010
Autor: wieschoo

Fallende Monotonie kannst du beweisen, indem du [mm] $a_n>a_{n+1}$ [/mm] beweist. Da gelingt dir indem du

[mm] $0
zeigst. Oder folgendes

[mm] $\frac{a_n}{a_{n+1}}>1$ [/mm]

Bezug
                
Bezug
Monotonie einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 14.03.2010
Autor: Dr.Prof.Niemand

Ich kenne die Vorgehensweise zum Nachweis von Monotonie, aber ich habe mit dieser Folge ein Problem...

Bezug
                        
Bezug
Monotonie einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 14.03.2010
Autor: steppenhahn

Hallo,

probiere folgendes:

[mm] $\sqrt[4]{k+1} [/mm] - [mm] \sqrt[4]{k} [/mm] = [mm] \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} [/mm] = [mm] \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} [/mm] = [mm] \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}$, [/mm]

nun nochmal 3. binomische Formel im Zähler und dann kann man die Monotonie ablesen, da der Nenner für wachsendes k immer größer wird.

Grüße,
Stefan

Bezug
                                
Bezug
Monotonie einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 14.03.2010
Autor: angela.h.b.


> Hallo,
>  
> probiere folgendes:
>  
> [mm]\sqrt[4]{k+1} - \sqrt[4]{k} = \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}[/mm],

Hallo,

Du erklärst hier gerade, wie man die Monotonie von [mm] b_k:=\sqrt[4]{k} [/mm] zeigen kann.

Gezeigt werden sollte aber die von [mm] a_k:=\sqrt[4]{k+1} [/mm] - [mm] \sqrt[4]{k} [/mm]

Gruß v. Angela

>  
> nun nochmal 3. binomische Formel im Zähler und dann kann
> man die Monotonie ablesen, da der Nenner für wachsendes k
> immer größer wird.
>  
> Grüße,
>  Stefan


Bezug
                                        
Bezug
Monotonie einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 So 14.03.2010
Autor: steppenhahn

Hallo Angela,

  

> > [mm]\red{a_{k}} = \sqrt[4]{k+1} - \sqrt[4]{k} = \frac{(\sqrt[4]{k+1} - \sqrt[4]{k})*(\sqrt[4]{k+1} + \sqrt[4]{k})}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{\sqrt[2]{k+1} - \sqrt[2]{k}}{\sqrt[4]{k+1} + \sqrt[4]{k}} = \frac{(\sqrt[2]{k+1} - \sqrt[2]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}{(\sqrt[4]{k+1} + \sqrt[4]{k})*(\sqrt[2]{k+1} + \sqrt[2]{k})}[/mm],
>  
> Hallo,
>  
> Du erklärst hier gerade, wie man die Monotonie von
> [mm]b_k:=\sqrt[4]{k}[/mm] zeigen kann.
>  
> Gezeigt werden sollte aber die von [mm]a_k:=\sqrt[4]{k+1}[/mm] -
> [mm]\sqrt[4]{k}[/mm]

Das wird durch obiges auch erfüllt.
Ich forme [mm] a_{k} [/mm] um und sehe am Ende, das [mm] a_{k} [/mm] monoton fallend ist, weil es sich in einen Bruch umschreiben lässt, der für größeres k immer kleiner wird.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]