www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Monotonie beweisen
Monotonie beweisen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie beweisen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:11 Di 19.11.2013
Autor: littlebrat

Aufgabe
Ich habe die Folge [mm]an = \bruch{3n-1}{n+1} [/mm]   gegeben und soll
die Monotonie beweisen.

Vermutung monoton steigend da a1=1, a2=[mm]\bruch{5}{3}[/mm], a3=2 und a4=[mm]\bruch{11}{5}[/mm].

[mm]\bruch{3(n-1)-1}{n+2} - \bruch{3n-1}{n+1} > 0 [/mm]

[mm]= \bruch{3n+2}{n+2} - \bruch{3n-1}{n+1} > 0 [/mm]

[mm]= \bruch{(3n+2)(n-1)-(3n-1)(n+2)}{(n+2)(n+1)} > 0 [/mm]

[mm]= \bruch{3n^2+3n+2n+2-3n^2+6n-n-2}{2n^2+2n+2} > 0 [/mm]

[mm]= \bruch{10n}{2n^2+2n+2} > 0 [/mm]


Stimmt das soweit? Was soll mir das Ergebnis über die Monotonie sagen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Monotonie beweisen: Korrektur + Hinweise
Status: (Antwort) fertig Status 
Datum: 00:20 Di 19.11.2013
Autor: Loddar

Hallo littlebrat!


> [mm]\bruch{3(n-1)-1}{n+2} - \bruch{3n-1}{n+1} > 0[/mm]

[notok] Wenn Du zeigen willst [mm] $a_{n+1}-a_n [/mm] \ > \ 0$ , muss es heißen:

[mm] $\bruch{3*(n \ \red{+} \ 1)-1}{n+1+1}-\bruch{3*n-1}{n+1} [/mm] \ > \ 0$



> [mm]= \bruch{10n}{2n^2+2n+2} > 0[/mm]
>
> Stimmt das soweit? Was soll mir das Ergebnis über die
> Monotonie sagen?

Durch den obigen Fehler gleich zu Beginn sieht dieser Term nun etwas anders aus.
Aber z.B. zu diesem Term kann man sagen: es werden ausschließlich positive $n_$ eingesetzt, welche sowohl einen positiven Zähler als auch einen positiven Nenner erzeugen.
Daraus folgt unmittelbar, dass auch der Gesamtbruch stets positiv ist.


Gruß
Loddar

Bezug
                
Bezug
Monotonie beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Di 19.11.2013
Autor: littlebrat

das tut mir leid...ich hatte da wohl einfach einen tippfehler....ich habe auch die rechnung mit

$ [mm] \bruch{3(n+1)-1}{n+2} [/mm] - [mm] \bruch{3n-1}{n+1} [/mm] > 0 $

gemacht und bin dennoch auf

$ = [mm] \bruch{10n}{2n^2+2n+2} [/mm] > 0 $

gekommen.



Bezug
                        
Bezug
Monotonie beweisen: siehe oben!
Status: (Antwort) fertig Status 
Datum: 00:40 Di 19.11.2013
Autor: Loddar

Hallo!


> das tut mir leid...ich hatte da wohl einfach einen
> tippfehler....ich habe auch die rechnung mit

>

> [mm]\bruch{3(n+1)-1}{n+2} - \bruch{3n-1}{n+1} > 0[/mm]

[ok]



> gemacht und bin dennoch auf

>

> [mm]= \bruch{10n}{2n^2+2n+2} > 0[/mm]

>

> gekommen.

Dann ist doch alles geklärt ... siehe meine letzte Antwort.


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]