www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Monotonie bei Funktionen
Monotonie bei Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie bei Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Sa 03.11.2007
Autor: Test12

Aufgabe
[mm] f(x)=\bruch{1}{x} [/mm]

Ich wollte mittels der Erklärung für den Monotoniebeweis die von mir angegebene  Funktion beweisen. Nur leider scheine ich die Erklärung nicht verstanden zu haben oder sie ist in manchen Fällen nicht anwendbar?

Ich sehe, dass die Folge monoton fallend ist: Ich versuche meine Annahme zu beweisen: für 0<=x2<=x1

x1>x2       x1-x2>0     [mm] x1=x2+\Delta [/mm] x  [mm] \Delta [/mm] x>0

einsetzen in die Funktion für x1
[mm] \bruch{1}{x2+ \Delta x } [/mm]  > [mm] \bruch{1}{x2} [/mm]

Wo liegt denn mein Fehler? Danke ;)



        
Bezug
Monotonie bei Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Sa 03.11.2007
Autor: angela.h.b.

Hallo,

[willkommenmr].

Du möchtest also zeigen, daß durch [mm] f(x):=\bruch{1}{x} [/mm] definierte Funktion monoton fallend ist.

Bevor Du irgendetwas tust, mußt Du allerdings den Definitionsbereich für Deine Funktion angeben.

Für welche x willst Du die Funktion betrachten? Die 0 fällt ja sowieso schonmal heraus.

Betrachtest Du sie nun auf [mm] \IR [/mm] \ [mm] \{0\} [/mm] ist sie gar nicht monoton fallend. Es ist doch -1< [mm] \bruch{1}{2} [/mm]

und [mm] -1=f(-1)
Ich glaube mal, daß Du die Funktion f: [mm] \IR_+ \to \IR [/mm] betrachten möchtest.

Sei nun 0< x<y.

Du kannst doch einfach den Kehrwert bilden, dabei dreht sich das Ungleichheitszeichen um.

==> [mm] \bruch{1}{x}> \bruch{1}{y}. [/mm]


Oder Du rechnest [mm] \bruch{1}{x}- \bruch{1}{y}=\bruch{y-x}{xy} [/mm] > 0, denn x<y.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]