www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Monotonie bei FOlgen
Monotonie bei FOlgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie bei FOlgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Do 12.10.2006
Autor: Mamoe

Aufgabe
Ab welchem Folgenglied ist die Folge monoton?

a [mm] \cap [/mm] = 16 -  2 ^ [mm] \cap [/mm]

b [mm] \cap [/mm] = [mm] 12\cap [/mm] - [mm] \cap [/mm] ²

c [mm] \cap [/mm] = [mm] (\cap-5)² [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das ist eine Zusatzaufgabe die wir erledigen können wenn wir wollen und mich interessiert das aber ich finde keinen Ansatz und finde daher auch keine Lsöung....Bitte um Hilfe

        
Bezug
Monotonie bei FOlgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 12.10.2006
Autor: ullim

Hi Mamoe,

ich geh mal davon aus das Du folgende Folgen meinst:

I)   [mm] a_n=16-2^n [/mm]

II)  [mm] b_n=12n-n^2 [/mm]

III) [mm] c_n=(n-5)^2 [/mm]

Bei I) ist die Lage klar, da [mm] 2^n [/mm] immer größer wird, wird [mm] a_n [/mm] immer kleiner und zwar schon ab dem ersten Index.

Bei den anderen beiden Folgen kann man prüfen in welchem Verhältnis [mm] a_n [/mm] zu [mm] a_{n+1} [/mm] steht.

Bei II) ergibt sich folgendes

[mm] \bruch{a_n}{a_{n+1}}=\bruch{n(12-n)}{n(12-n)+11-2n} [/mm] also ist [mm] a_n [/mm] monoton fallend ab dem Index [mm] n_0, [/mm] ab dem [mm] 11-2n\le0 [/mm] gilt. Dies ist ab [mm] n_0=6 [/mm] der Fall.

III) kann man ähnlich lösen.

mfg ullim

Bezug
                
Bezug
Monotonie bei FOlgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Fr 13.10.2006
Autor: Mamoe

Guten Abend und schonmal vielen Dank. Deine Rechnung kann ich schon nachvollziehen  dafür schonmal vielen Dank =) aber der Denkansatz fehlt mir.... also ich wüsste von allein nicht wie ich darauf kommen kann....kannst du mir vll einen Tipp geben wie ich auf sowas kommen kann bzw. wie ich sowas erkenne ??? Das wäre sehr nett...

MFG

Bezug
                        
Bezug
Monotonie bei FOlgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Fr 13.10.2006
Autor: ullim

Hi Mamoe,

vielleicht ist der Ansatz [mm] a_n\sim a_{n+1} [/mm] besser, als der, den ich in der Antwort gewählt habe.

Mit obigem Ansatz würde gelten

[mm] 12n-n^2\sim12(n+1)-(n+1)^2 [/mm] was äquivalent ist zu

[mm] n\sim\bruch{11}{2} [/mm] also n=6 bei einer fallenden Folge.


mfg ullim



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]