www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Monotonie
Monotonie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie: Frage
Status: (Frage) beantwortet Status 
Datum: 11:03 Sa 02.04.2005
Autor: Fry

Hallo !
Zu beweisen ist die Monotonie
von [mm] a_n [/mm] = sqrt(n) - sqrt(n-1)

Habs mit [mm] a_n+1 [/mm] < [mm] a_n [/mm]  und [mm] a_n+1/ a_n [/mm] < 1 probiert.
Habs nicht hin bekommen. Oder gibts vielleicht gar keine Monotonie.

Wäre toll, wenn ihr mir helfen könntet.
Danke
Fry

        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Sa 02.04.2005
Autor: Zwerglein

Hi, Fry,

doch, doch: Die Folge ist echt monoton abnehmend.
Das ergibt sich bereits daraus, dass die zugehörige Funktion f(x) = [mm] \wurzel{x}-\wurzel{x-1} [/mm] echt monoton abnimmt. Hier beweist man's ja bekanntlich damit, dass man das Vorzeichen der 1.Ableitung ermittelt: f'(x)<0 für alle x > 1.

Ich probier's mal selbst mit Deinem Ansatz
[mm] a_{n+1} [/mm] < [mm] a_{n} [/mm]
<=> [mm] \wurzel{n+1} [/mm] - [mm] \wurzel{n} [/mm] < [mm] \wurzel{n} [/mm] - [mm] \wurzel{n-1} [/mm]
<=> [mm] \wurzel{n+1} [/mm] + [mm] \wurzel{n-1} [/mm] < [mm] 2*\wurzel{n} [/mm]
Beide Seiten positiv; daher:
<=> [mm] (\wurzel{n+1} [/mm] + [mm] \wurzel{n-1})^{2} [/mm] < [mm] (2*\wurzel{n})^{2} [/mm]
<=> 2n + [mm] 2*\wurzel{n^{2}-1} [/mm] < 4n
<=> [mm] 2*\wurzel{n^{2}-1} [/mm] < 2n
<=> [mm] \wurzel{n^{2}-1} [/mm] < n
<=> [mm] \wurzel{n^{2}-1} [/mm] < [mm] \wurzel{n^{2}} [/mm]
Da die letzte Aussage offensichtlich wahr ist, gilt dies auch für die erste. q.e.d.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]