www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Monoid
Monoid < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monoid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mo 06.01.2014
Autor: lapeiluw

Aufgabe
"Die Uhr als Monoid"
Sei [mm] C_{12} := ( \underline{12}, +_{12}, 0) [/mm] mit
[mm] x +_{12} y :=\left\{\begin{matrix} x + y, & \mbox{falls }x + y < 12 \\ x + y - 12, & \mbox{sonst } \end{matrix}\right. [/mm]

(a) Bestimme zu [mm] x \in \underline{12} [/mm] das Inverse in [mm] C_{12} [/mm]
(b) Sind [mm] x, y, z \in \underline{12} [/mm] und [mm] t := x + y + z \in\IN [/mm], so begründe:

[mm] (x +_{12} y) +_{12} z =\left\{\begin{matrix} t & \mbox{falls }t < 12 \\ t - 12 & \mbox{falls }12 \le t \le 24 \\ t - 24 & \mbox{sonst. } \end{matrix}\right. [/mm]

Folgere hieraus das Assoziationsgesetz für [mm] +_{12} [/mm]

Also ich bin bei (b).
Das Prinzip ist klar, also dass es diesmal 3 Fälle gibt, ist logisch, da wie auch notiert, da  [mm] t \mbox{ 1. } < 12, \mbox{ 2. } 12 \le t < 24, \mbox{ 3. } \le 24 [/mm] sein kann, und unsere "Uhr"/unsere Menge des Monoids nur bis 11 geht.
Dementsprechend, würden bei 4 Elementen noch ein 4. Fall dazukommen [mm] < 36 [/mm] usw. Das ist klar. Nur wie begründe ich das mathematisch. Einen Kreis aufzeichnen, wird ja sicher nicht zählen ;)

Ich habe erst überlegt, den Term [mm] (x +_{12} y) [/mm] durch eine neue Variable zu ersetzen bspw. [mm] w [/mm] um nur 2 Variable zu haben und mit der Vorgabe umgehen zu können. Nur stoße ich da schon ganz zu Anfang an Probleme, da ja schon die Variable [mm] w < 12 [/mm] oder [mm] \le 12 [/mm] sein kann. Irgendwie hilft mir das also nicht wirklich weiter...

Also ich brauche einen Tipp für die Herangehensweise an diesen Beweis.
Danke

        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 06.01.2014
Autor: leduart

Hallo
du musst die Fälle x+y<12 und [mm] \ge [/mm] 12 getrennt behandeln. ob du dafür ein w einführst ist egal.
Gruss leduart

Bezug
                
Bezug
Monoid: Lösungsversuch
Status: (Frage) beantwortet Status 
Datum: 11:57 Di 07.01.2014
Autor: lapeiluw

Naja, das mit der Fallunterscheidung war mir schon klar, aber wie ich das konkret angehen kann ist mir unklar.
Ich hab mal versucht aufzuschreiben, wie ich es machen würde und danach folgen meine Fragen dazu:

1. Fall [mm] x + y < 12, [/mm] Einführung von [mm] w := x + y [/mm]

Beweis 1. Fall
[mm] (x +_{12} y) +_{12} z = (x + y) +_{12} z = w +_{12} z =\left\{\begin{matrix} w + z & \mbox{falls } w + z < 12 \\ w + z - 12, & \mbox{falls }sonst. \end{matrix}\right. [/mm]

2. Fall [mm] x + y \ge 12, [/mm] Einführung von [mm] v := x + y - 12 [/mm]

Beweis 2. Fall
[mm] (x +_{12} y) +_{12} z = (x + y - 12) +_{12} z = v +_{12} z =\left\{\begin{matrix} v + z & \mbox{falls } v + z < 12 \\ v + z - 12, & \mbox{falls }sonst. \end{matrix}\right. [/mm]

[mm] \longrightarrow [/mm] 1. Fall [mm] w + z = x + y + z = t [/mm],

2. Fall [mm] w + z - 12 = x + y + z - 12 = t - 12 [/mm],

3. Fall [mm] v + 12 = x + y - 12 + z = t - 12 = \mbox{2. Fall} [/mm],

4. Fall [mm] v + z - 12 = x + y - 12 + z - 12 = t - 24 [/mm]

was m.E. unsauber aussieht, ist, wie ich jetzt in den 2. = 3. Fall die Bedingung [mm] 12 \le t \le 12 [/mm] sauber reinbekomme und für den 4. Fall [mm] t \ge 24 [/mm].
Ist der Beweis, so wie ich ihn führe, denn formal korrekt? Kann man das so schreiben?
Danke

Bezug
                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Di 07.01.2014
Autor: leduart

Hallo
1. Fall t<12 folgt x+y<12 folgt (x+y)+z=x+y+z=x+(y+z)
2. fall [mm] 12\le t\le [/mm] 24
a) x+y<12  
x+y+z=(x+y)+z-12=x+y+z-12 => t=t-12
[mm] b)x+y\ge [/mm] 12   x+y=x+y-12  x+y+z=x+y-12+z=x+y+z-12=> t =t-12
entsprechend für t>24
dazu muß x+y>12  oder x+z>12 oder y+z>12
Gruss leduart

Bezug
                                
Bezug
Monoid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 07.01.2014
Autor: lapeiluw

ok, danke...
hm das heißt, meine Form des Beweisführens funktioniert so nicht?
ich würde mich auch über einen Kommentar zu meinem Versuch freuen...

Bezug
                                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 07.01.2014
Autor: leduart

Hallo
siehe meine andere Antwort
Gruß leduart

Bezug
                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 07.01.2014
Autor: leduart

Hallo
schreib doch bitte drüber  für welche t du gerade arbeitest-
0 ter Fall t<12 klar, da x+y<=x+_{12} y und damit w+z=w+_{12}=> t=t
1. Fall [mm] 12\le [/mm] t ˜ le 24

> 1.1 Fall [mm]x + y < 12,[/mm] Einführung von [mm]w := x + y[/mm]
>  
> Beweis 1.1  Fall

wegen x+y=x+_{12} y

> [mm](x +_{12} y) +_{12} z = (x + y) +_{12} z = w +_{12} z =\left\{\begin{matrix} w + z & \mbox{falls } w + z < 12 \\ w + z - 12, & \mbox{falls }sonst. \end{matrix}\right.[/mm]

dahinter sollte dann das Ergebnis für t

>  
> 2. Fall [mm]x + y \ge 12,[/mm] Einführung von [mm]v := x + y - 12[/mm]
>  
> Beweis 2. Fall
>  [mm](x +_{12} y) +_{12} z = (x + y - 12) +_{12} z = v +_{12} z =\left\{\begin{matrix} v + z & \mbox{falls } v + z < 12 \\ v + z - 12, & \mbox{falls }sonst. \end{matrix}\right.[/mm]
>  

wieder richtig, noch auf w übertragen

> [mm]\longrightarrow[/mm] 1. Fall [mm]w + z = x + y + z = t [/mm],
>  
> 2. Fall [mm]w + z - 12 = x + y + z - 12 = t - 12 [/mm],
>  
> 3. Fall [mm]v + 12 = x + y - 12 + z = t - 12 = \mbox{2. Fall} [/mm],
>  
> 4. Fall [mm]v + z - 12 = x + y - 12 + z - 12 = t - 24[/mm]
>  
> was m.E. unsauber aussieht, ist, wie ich jetzt in den 2. =
> 3. Fall die Bedingung [mm]12 \le t \le 12[/mm] sauber reinbekomme
> und für den 4. Fall [mm]t \ge 24 [/mm].
>  Ist der Beweis, so wie ich
> ihn führe, denn formal korrekt? Kann man das so
> schreiben?

Sas ist alles richtig, aber einfacher zu lesen wenn du die 3 Fälle für t einzeln betrachtest und dabei ja nur für den Fall 12<t<24 eine Fallunterscheidung brauchst und dein v oder w benutzen kannst
wie du es aufschreibst ist zwar nicht falsch, aber sehr undurchsichtig.
Gruss leduart


Bezug
                                
Bezug
Monoid: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Do 09.01.2014
Autor: lapeiluw

Vielen Dank, das hat mir sehr geholfen. Habe nun eine, ich denke, klare und verständliche Lösung!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]