www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Möglichkeiten von Betrag n ct
Möglichkeiten von Betrag n ct < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möglichkeiten von Betrag n ct: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Sa 03.12.2016
Autor: questionpeter

Aufgabe
Für [mm] n\in \IN_0 [/mm] bezeichne [mm] a_n, [/mm] die Anzahl von Möglichkeiten einen Betrag von nct durch 1ct, 2ct und 5ct Münzen darzustellen:

[mm] a_n=|\{(m_1,m_2,m_5)\in\IN^3_0: 1*m_1+2*m_2+5*m_5=n \}| [/mm]

Bestimmen Sie die erzeugende Funktion [mm] GF(a_n)(z). [/mm] Berechnen Sie damit eine explizite Darstellung für [mm] a_n. [/mm]

Bestimmen Sie die Anzahl an Möglichkeiten einen Betrag von nct durch 1ct, 2ct und 5ct Münzen darzustellen, wobei höchstens drei 1ct, höchstens 2ct Münzen verwendet werden dürfen, in ABhängigkeit von [mm] (a_n)_{n\ge 0} [/mm] unter Verwendung der Siebformel

hallo,

ich komme einfach nicht weiter und hoffe Ihr könnt mir da weiterhelfen.

Da fängt es schon an, dass ich probleme bei der Bestimmung der erzeugende Funktion habe.

ich wäre folgende herangegangen:

[mm] GF(a_n)(z)=GF(1*m_1+2*m_2+5*m_5=n)(z)=GF(n)(z)=GF(n*1)(z)=(zD)GF(1)(z)=(zD)\bruch{1}{1-z}=\bruch{z}{(1-z)^2} [/mm]

dann habe ich mir überlegt wie sich n ct durch die Münzen 1ct, 2ct und 5ct darstellen lässt, dabei darf höchsten drei 1ct und höchsten zwei 2ct verwendet werden:

dabei steht grün für die Anzahl der 1 ct

rot: Anzahl der 2 ct

1* 3 +2* 2 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-7}{5} [/mm]

1* 2 +2* 2 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-6}{5} [/mm]

1* 1 +2* 2 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-5}{5} [/mm]

1* 3 +2* 1 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-4}{5} [/mm]

1* 2 +2* 1 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-3}{5} [/mm]

1* 1 +1* 2 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-2}{5} [/mm]

1* 1 +2* 0 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-1}{5} [/mm]

1* 2 +2* 0 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-2}{5} [/mm]

1* 3 +2* 0 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-3}{5} [/mm]

1* 0 +2* 2 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-2}{5} [/mm]

1* 0 +2* 1 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n-7}{5} [/mm]

1* 0 +2* 0 [mm] +5*m_{5}=n \Rightarrow m_5=\bruch{n}{5} [/mm]


d.h 12 Möglichkeiten

ich stehe total auf dem Schlauch, daher bin ich für jeden Tipp dankbar.


        
Bezug
Möglichkeiten von Betrag n ct: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 04.12.2016
Autor: leduart

Hallo
1. Deine Aufstellung ist nicht gut. weil ja die Teilbarkeit von n nicht eingeht.
1. 5|n also n=5m
allgemeines [mm] a_n [/mm]
eine Möglichkeit eine Möglichkeit nur 5c Münzen. danach m jede der k Münzen kann durch 2+2+1 oder 2+1+1+1 oder 1+1+1+1+1 ersetzt werden
damit sind alle Möglichkeiten  nächsten n=5m+1 usw dieselbe Anzahl wie bei n=5n
n=5m+2 zusätzlich die Möglichkeit 1+1 oder 2 also [mm] a_{5m+2}=a_{5m}+1 [/mm]
usw. wenn du nur 3*1 und 2*2 verwenden kannst entfällt das Aufteilen der Fünfer  von mehr als 1 Fünfer.
Gruß ledum  

Bezug
                
Bezug
Möglichkeiten von Betrag n ct: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 So 04.12.2016
Autor: abakus

Hallo leduart,
wo im Aufgabentext liest du, dass n durch 5 teilbar sein soll?

Bezug
                        
Bezug
Möglichkeiten von Betrag n ct: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Mi 07.12.2016
Autor: leduart

Hallo Abakus
das hab ich nie behauptet, sondern Wenn 5|n dannn usw.
Gruß leduart

Bezug
                
Bezug
Möglichkeiten von Betrag n ct: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:35 Di 06.12.2016
Autor: questionpeter

nochmals danke, aber ich hätte noch einige Fragen dazu.

Wie bestimmt man von [mm] a_n [/mm] die erzeugenden Funktion?

ich würde ertsmal überlegen. n mit 1ct nur dartsellen, d.h [mm] m_1=n [/mm] 1ct Münzen (1)

n nur mit 2 ct darstellen: [mm] m_2=\bruch{n}{2} [/mm]  (2)

n nur mit 5ct darstellen: [mm] m_5=\bruch{n}{5} [/mm]    (3)

würdest es dann heißen n muss duch 5 und 2 teilbar sein?


würde dann die einzelnen erzeugenden funktion dann so anschauen:

(1) [mm] \bruch{1}{1-z} [/mm]

(2) [mm] \bruch{1}{1-\bruch{1}{2}z} [/mm]

(3) [mm] \bruch{1}{1-\bruch{1}{5}z} [/mm]  ?

Wie bestimmt man die explizite Form?

tschuldigung für die vielen Fragen erstmal.
Dankeschön im voraus für die Beantwortung der Fragen.

Bezug
                        
Bezug
Möglichkeiten von Betrag n ct: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 08.12.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]