Mögliche Reihenfolgen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:11 Fr 14.01.2011 | Autor: | kalor |
Guten Abend
Leider tue ich mich ein wenig schwer mit Kombinatorik. Ich habe dafür nicht wirklich ein Gefühl und hoffe, dass jemand mir anschaulich erklären kann wie man auf das folgende kommt:
Wieviele Möglichkeiten gibt es folgende Situation anzuordnen:
[mm] 1 \le l_1 < \dots < l_i \le n [/mm] wobei n fest ist und [mm] i=1,2,\dots n [/mm]. Die $\ [mm] l_i$'s [/mm] können als Zahlen interpretiert werden. Also zum Beispeil sei n = 20. Ich interessiere mich für die Anzahl Anordnungen von Zahlen, wie oben beschrieben: Das Resultat sollte der Binomialkoeffizient. Allerdings kann ich mir das einfach nicht vorstellen. Beim Binomialkoeffizienten wähle ich doch aus einer n-elementigen Menge k Elemente aus. Also zum Beispiel Zahlenlotto. Aber dort spielt es ja keine Rolle ob mein Tipp: 6,2,1,24,17,40 wähle oder 40,17,24,1,2,6. Bei mir spielt aufgrund der strikten Ordnung dies doch eine Rolle.
Ich danke euch für anschauliche Erklärungen :)
Grüsse
KaloR
|
|
|
|
> Guten Abend
>
> Leider tue ich mich ein wenig schwer mit Kombinatorik. Ich
> habe dafür nicht wirklich ein Gefühl und hoffe, dass
> jemand mir anschaulich erklären kann wie man auf das
> folgende kommt:
>
> Wieviele Möglichkeiten gibt es folgende Situation
> anzuordnen:
>
> [mm]1 \le l_1 < \dots < l_i \le n[/mm] wobei n fest ist und
> [mm]i=1,2,\dots n [/mm]. Die [mm]\ l_i[/mm]'s können als Zahlen
> interpretiert werden. Also zum Beispeil sei n = 20. Ich
> interessiere mich für die Anzahl Anordnungen von Zahlen,
> wie oben beschrieben: Das Resultat sollte der
> Binomialkoeffizient. Allerdings kann ich mir das einfach
> nicht vorstellen. Beim Binomialkoeffizienten wähle ich
> doch aus einer n-elementigen Menge k Elemente aus. Also
> zum Beispiel Zahlenlotto. Aber dort spielt es ja keine
> Rolle ob mein Tipp: 6,2,1,24,17,40 wähle oder
> 40,17,24,1,2,6. Bei mir spielt aufgrund der strikten
> Ordnung dies doch eine Rolle.
> Ich danke euch für anschauliche Erklärungen :)
Hallo KaloR,
gerade weil beim Zahlenlotto die Reihenfolge der gewähl-
ten Zahlen keine Rolle spielt, darf man sie (z.B. für
die Veröffentlichung der Gewinnzahlen) in ihre strikte
natürliche Ordnung bringen.
Bei deiner obigen Frage sollen wohl die Werte sowohl von
n als auch von i vorgegeben sein. Zum Beispiel also n=20
und i=4 . Dann hat die Menge der Quadrupel [mm] [/mm] mit
[mm]1 \le l_1
[mm] $\pmat{20\\4}$
[/mm]
Elemente, denn diese Menge von Quadrupeln entspricht
genau der Menge aller 4-elementigen Teilmengen von
[mm] $\{\,1,\, 2,\, 3,\, .......\, ,\, 20\,\}$ [/mm] .
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:48 Fr 14.01.2011 | Autor: | kalor |
Hallo Al-Chwarizmi
Danke für deine schnelle Antwort!
>
> Bei deiner obigen Frage sollen wohl die Werte sowohl von
> n als auch von i vorgegeben sein. Zum Beispiel also n=20
> und i=4 . Dann hat die Menge der Quadrupel [mm][/mm]
> mit
> [mm]1 \le l_1
>
> [mm]\pmat{20\\4}[/mm]
Das verstehe ich eben noch nicht so ganz, siehe weiter unten
> Elemente, denn diese Menge von Quadrupeln entspricht
> genau der Menge aller 4-elementigen Teilmengen von
> [mm]\{\,1,\, 2,\, 3,\, .......\, ,\, 20\,\}[/mm] .
>
>
Ich sehe ein, dass die Menge aller 4-elmentigen Teilmenge von [mm]\{\,1,\, 2,\, 3,\, .......\, ,\, 20\,\}[/mm] gerade [mm]\pmat{20\\4}[/mm].
Das verstehe ich. Mein Problem ist, dass ich die Ordnungseinschränkung als eine Verschärfung des Problems empfinde. Mir ist klar, wenn ich aus einer n-elementigen Menge k Objekte auswähle, dass dies durch den Binomialkoeffizienten gegeben ist. Aber wie bereits geschrieben verlange ich hier ja noch mehr. Ich wähle k Elemente aus, die aber strikt geordnet sein müssen.
Also folgende Äquivalenz von Mengen ist mir nicht klar:
[mm][/mm], $ 1 [mm] \le l_1
Gruss
KaloR
|
|
|
|
|
> Das verstehe ich. Mein Problem ist, dass ich die
> Ordnungseinschränkung als eine Verschärfung des Problems
> empfinde. Mir ist klar, wenn ich aus einer n-elementigen
> Menge k Objekte auswähle, dass dies durch den
> Binomialkoeffizienten gegeben ist. Aber wie bereits
> geschrieben verlange ich hier ja noch mehr. Ich wähle k
> Elemente aus, die aber strikt geordnet sein müssen.
... ja, aber strikt geordnet nicht in irgendeiner beliebigen
Reihenfolge (in diesem Fall müsste man die verschiedenen
Reihenfolgen voneinander unterscheiden), sondern in der einfachen
natürlichen Reihenfolge (und davon gibt es nur eine einzige, wenn
die i verschiedenen Elemente der Teilmenge bestimmt sind) .
LG Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:05 Fr 14.01.2011 | Autor: | kalor |
Ich sehe was mein Problem ist: Ich verstehe die Bedingung falsch:
[mm] 1 \le l_1 < \dots < l_i \le n [/mm]
Dies habe ich mir so vorgestellt: Ich ziehe eine Zahl (wenn n=20 und i = 4), $\ [mm] l_1=15 [/mm] $. Dann dachte ich mir, dass ich ab jetzt nur noch Zahlen ziehen darf, die grösser als 15 sind. Aber ich ziehe einfach 4 Zahlen simultan und ordne sie nachher auf die entsprechende Art und Weise, welche hier eindeutig ist.
Ist dies korrekt so? Wenn ja hab ich es endlich begriffen :) Wenn dem so ist, danke für deine Geduld!
|
|
|
|
|
> Ich sehe was mein Problem ist: Ich verstehe die Bedingung
> falsch:
>
> [mm]1 \le l_1 < \dots < l_i \le n[/mm]
>
> Dies habe ich mir so vorgestellt: Ich ziehe eine Zahl (wenn
> n=20 und i = 4), [mm]\ l_1=15 [/mm]. Dann dachte ich mir, dass ich
> ab jetzt nur noch Zahlen ziehen darf, die grösser als 15
> sind. Aber ich ziehe einfach 4 Zahlen simultan und ordne
> sie nachher auf die entsprechende Art und Weise, welche
> hier eindeutig ist.
> Ist dies korrekt so? Wenn ja hab ich es endlich begriffen
> :) Wenn dem so ist, danke für deine Geduld!
Ja, ich denke, dass du das jetzt richtig siehst. Jedenfalls ist
die Berechnung mit dieser Betrachtungsweise deutlich einfacher
als über andere (ebenfalls mögliche) Wege.
LG Al-Chw.
|
|
|
|