www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Möbiustransformation
Möbiustransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möbiustransformation: Tipps und Tricks
Status: (Frage) beantwortet Status 
Datum: 22:51 Fr 17.05.2013
Autor: aloeb

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo liebe Mitglieder,

ich mach es mal kurz:
ich soll zeigen, dass eine beliebige Möbiustransformation an jedem Punkt der Komplexen Ebene winkeltreu ist und dies auch begründen.

Mein Lösungsweg würde folgendermaßen aussehen:
Da die ersten beiden Grundtypen Winkeltreue aufweisen, bleibt mir nur noch den 3. Grundtypen (Inversion) auf winkeltreue zu untersuchen, d.h. dass ich zeigen werde, dass der dritte Grundtyp sowohl analytisch als auch bijektiv ist ??!!!

Oder soll ich ganz einfach zeigen dass die Möbiustransformation an sich analytisch ist ??

Bin kein Mathematiker von daher erwartet bitte nicht all zu viel von mir :P



        
Bezug
Möbiustransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:46 Sa 18.05.2013
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo liebe Mitglieder,
>  
> ich mach es mal kurz:
> ich soll zeigen, dass eine beliebige Möbiustransformation
> an jedem Punkt der Komplexen Ebene winkeltreu ist und dies
> auch begründen.
>  
> Mein Lösungsweg würde folgendermaßen aussehen:
>  Da die ersten beiden Grundtypen Winkeltreue aufweisen,
> bleibt mir nur noch den 3. Grundtypen (Inversion) auf
> winkeltreue zu untersuchen


Ja

> , d.h. dass ich zeigen werde,
> dass der dritte Grundtyp sowohl analytisch als auch
> bijektiv ist ??!!!


Da Du kein Mathematiker bist und ich nicht im Bilde bin, was Ihr gemacht habt und verwenden dürft, rate ich Dir folgendes:

Definiere $T: [mm] \IC \setminus \{0\} \to \IC \setminus \{0\}$ [/mm] durch

   $T(z)=1/z$.

Zeige: T ist bijektiv, T ist holomorph und T'(z) [mm] \ne [/mm] 0  für alle z [mm] \ne [/mm] 0.


FRED

>
> Oder soll ich ganz einfach zeigen dass die
> Möbiustransformation an sich analytisch ist ??
>
> Bin kein Mathematiker von daher erwartet bitte nicht all zu
> viel von mir :P
>  
>  


Bezug
                
Bezug
Möbiustransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 So 19.05.2013
Autor: aloeb

die aufgabe wurde von mir bereits gelöst, da ich hilfe in der VL finden konnte. Habe ganz einfach die Möbiustrafo an sich abgeleitet und feststellen dürfen, dass sie ungleich 0 ist, was beweis genug war.

Danke Fred für die Antwort

Bezug
                        
Bezug
Möbiustransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:26 Mo 20.05.2013
Autor: Student18

Hallo,

Könntest du den Rechenweg posten, damit wir alle was davon haben.

Gruß

Bezug
                                
Bezug
Möbiustransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 22.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]