www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Modulo Gleichung Lösen
Modulo Gleichung Lösen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo Gleichung Lösen: Frage zu Beispiel
Status: (Frage) beantwortet Status 
Datum: 00:04 Di 28.08.2012
Autor: Jack159

Aufgabe
Finden Sie alle [mm] x\in\IZ_{6}, [/mm] die die Gleichung lösen:
4+x=3 (mod 6)

Hallo,

Durch nachdenken+ausprobieren bekomme ich diese Gleichung gelöst.
Jedoch gibt es dafür eine "simple" Formel, mit der man die Lösung direkt berechnen kann:


Satz:
Seien a, b ganze Zahlen, m eine natürliche Zahl. Dann gilt:
a+x=b (mod m) besitzt immer eine eindeutige Lösung x in [mm] \IZ_{m} [/mm] (und unendlich viele dazu kongruente Lösungen außerhalb [mm] \IZ_{m}). [/mm] Man erhält sie, indem man auf beiden Seiten der Kongruenzgleichung das additive Inverse −a von a in [mm] \IZ_{m} [/mm] addiert:
x=(−a)+b (mod m).


Aber irgendwie komme ich mithilfe dieses Satzes/Formel nicht auf die richtige Lösung x=5.
Zunächst muss man die additive Inverse zu 4 in [mm] \IZ_{6} [/mm] berechnen:
6-4=2
Jetzt setze ich meine Inverse 2 nun gemäß der obigen Formel in mein Beispiel ein:
x=(-2)+3 (mod 6) = 1 mod (6)

Ich komme hier auf x=1 und nicht auf die eigentlich richtige Lösung x=5 ?!
Wo liegt mein Fehler?


        
Bezug
Modulo Gleichung Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Di 28.08.2012
Autor: reverend

Hallo Jack,

lies genau.

> Finden Sie alle [mm]x\in\IZ_{6},[/mm] die die Gleichung lösen:
>  4+x=3 (mod 6)
>  Hallo,
>  
> Durch nachdenken+ausprobieren bekomme ich diese Gleichung
> gelöst.
>  Jedoch gibt es dafür eine "simple" Formel, mit der man
> die Lösung direkt berechnen kann:
>  
> Satz:
> Seien a, b ganze Zahlen, m eine natürliche Zahl. Dann
> gilt:
>  a+x=b (mod m) besitzt immer eine eindeutige Lösung x in
> [mm]\IZ_{m}[/mm] (und unendlich viele dazu kongruente Lösungen
> außerhalb [mm]\IZ_{m}).[/mm] Man erhält sie, indem man auf beiden
> Seiten der Kongruenzgleichung das additive Inverse −a von
> a in [mm]\IZ_{m}[/mm] addiert:
>  x=(−a)+b (mod m).
>  
>
> Aber irgendwie komme ich mithilfe dieses Satzes/Formel
> nicht auf die richtige Lösung x=5.
>  Zunächst muss man die additive Inverse zu 4 in [mm]\IZ_{6}[/mm]
> berechnen:
>  6-4=2

So ist es. [ok]

>  Jetzt setze ich meine Inverse 2 nun gemäß der obigen
> Formel in mein Beispiel ein:
>  x=(-2)+3 (mod 6) = 1 mod (6)

Wieso setzt Du jetzt -2 ein? Der Satz verlangt hier doch die gerade berechnete Inverse 2.

> Ich komme hier auf x=1 und nicht auf die eigentlich
> richtige Lösung x=5 ?!

Und siehe da: [mm] x=2+3\equiv 5\mod{6} [/mm]

>  Wo liegt mein Fehler?

Wie gesagt: lies nochmal nach, was Dein Satz besagt. ;-)

Grüße
reverend


Bezug
                
Bezug
Modulo Gleichung Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:22 Di 28.08.2012
Autor: Jack159

Hallo reverend,

>  
> >  Jetzt setze ich meine Inverse 2 nun gemäß der obigen

> > Formel in mein Beispiel ein:
>  >  x=(-2)+3 (mod 6) = 1 mod (6)
>  
> Wieso setzt Du jetzt -2 ein? Der Satz verlangt hier doch
> die gerade berechnete Inverse 2.
>  
> > Ich komme hier auf x=1 und nicht auf die eigentlich
> > richtige Lösung x=5 ?!
>  
> Und siehe da: [mm]x=2+3\equiv 5\mod{6}[/mm]
>  

Ach stimmt...
Mich hatte da in der Formel aus dem Satz das Minus vor dem a verwirrt bzw. fehlgeleitet. Dachte man müsste dort das Vorzeichen der Inverse umkehren, dabei ist das Minuszeichen ja nur das "Symbol" (bzw ein Teil davon) der Inversen.

Danke vielmals ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]