www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "physikalische Chemie" - Modellexperiment Reaktionsord.
Modellexperiment Reaktionsord. < physikalische Chemie < Chemie < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "physikalische Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellexperiment Reaktionsord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 24.11.2008
Autor: Benja91

Aufgabe
1. Ziehen sie aus dem Gefäß zwei Kugeln. Die Ziehung simoliert die Reaktion zweier Teilchen A des Audsgangsstoffs. Kennzeichnen sie die Kugeln mit dem Stift als Produkte B und C und geben Sie sie in das Gefäß zurück.
2. Wiederhoen sie den Vorgang etwa 40-mal:
Werden A-Kugeln gezogen, werden sie mit dem Stift makiert und zurückgelegt. Werden B- oder C-Kugeln gezogen, werden sie unverändert zurückgegeben.
3. Notieren sie das Ergebnis der Aufgabenstellung und zeichnen Sie sie in ein [mm] \bruch{1}{n(A)} [/mm] /t Diagramm ein. Wobei n(A) die Anzahl der verbleibenden Teilchen und t die Anzahl der Ziehungen darstellt.
Welchen Zusammenhang zeigt das [mm] \bruch{1}{n(A)} [/mm] /t Diagramm ? Bestätigen Sie diesen durch die Intefration des Zeitgesetzes [mm] v=\bruch{dc}{4dt}=-k*c^2 [/mm]

Bei dem Diagramm ist nun eine Exponentialfunktion entstanden, was ja auf Grund der oben angegebenen Formel [mm] v=-k*c^2, [/mm] richtig zu sein scheint.
Nun habe ich mir überlegt: [mm] f(x)=c*a^x [/mm] --> [mm] v=-k*c^2 [/mm] --> [mm] v=(-1)*k*c^2 [/mm] . Somot wäre es doch eigentlich klar, dass der Zusammenhang exponential ist. Ich bin mir aber nicht sicher. Wäre nett, wenn ihr mir helfen könntet.
Gruss =)

        
Bezug
Modellexperiment Reaktionsord.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mo 24.11.2008
Autor: Martinius

Hallo,

> 1. Ziehen sie aus dem Gefäß zwei Kugeln. Die Ziehung
> simoliert die Reaktion zweier Teilchen A des
> Audsgangsstoffs. Kennzeichnen sie die Kugeln mit dem Stift
> als Produkte B und C und geben Sie sie in das Gefäß
> zurück.
>  2. Wiederhoen sie den Vorgang etwa 40-mal:
> Werden A-Kugeln gezogen, werden sie mit dem Stift makiert
> und zurückgelegt. Werden B- oder C-Kugeln gezogen, werden
> sie unverändert zurückgegeben.
>  3. Notieren sie das Ergebnis der Aufgabenstellung und
> zeichnen Sie sie in ein [mm]\bruch{1}{n(A)}[/mm] /t Diagramm ein.
> Wobei n(A) die Anzahl der verbleibenden Teilchen und t die
> Anzahl der Ziehungen darstellt.
> Welchen Zusammenhang zeigt das [mm]\bruch{1}{n(A)}[/mm] /t Diagramm
> ? Bestätigen Sie diesen durch die Intefration des
> Zeitgesetzes [mm]v=\bruch{dc}{4dt}=-k*c^2[/mm]
>  Bei dem Diagramm ist nun eine Exponentialfunktion
> entstanden, was ja auf Grund der oben angegebenen Formel
> [mm]v=-k*c^2,[/mm] richtig zu sein scheint.
> Nun habe ich mir überlegt: [mm]f(x)=c*a^x[/mm] --> [mm]v=-k*c^2[/mm] -->
> [mm]v=(-1)*k*c^2[/mm] . Somot wäre es doch eigentlich klar, dass der
> Zusammenhang exponential ist. Ich bin mir aber nicht
> sicher. Wäre nett, wenn ihr mir helfen könntet.
> Gruss =)


So aus dem Ärmel geschüttelt hätte ich mir gedacht, dass c gegen t aufgetragen (bzw. n(A) gegen t aufgetragen) eine reziproke Funktion o. ä. ergeben würde.

Mithin das [mm]\bruch{1}{n(A)}[/mm] /t Diagramm vielleicht eine Gerade ergeben könnte?


Integriere doch einmal deine Differentialgleichung 1. Ordnung nach Separation der Variablen:

[mm]v=\bruch{dc}{dt}=-k*c^2[/mm]

[mm] $\bruch{1}{c^2}\;dc [/mm] = -k*dt$

[mm] $\integral \bruch{1}{c^2}\;dc [/mm] = [mm] -\integral k\;dt$ [/mm]

[mm] $-\bruch{1}{c}=-k*t+D'$ [/mm]

[mm] $\bruch{1}{c}=k*t+D$ [/mm]


Nun steht's doch da.

LG, Martinius





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "physikalische Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]