www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:39 Sa 02.07.2011
Autor: Jules-20

halli hallo,
ich habe hier genau gesagt drei aufgaben zu dem mittelwertsatz und komm nich mal ansatzweise damit zurecht :(
die aufgaben lauten:

mit hilfe des mittelwersatzes bzw des verallgemeinerten mittelwertsatzes der differentialrechnung beweise man folgende aussagen:

a, die funktion f:(0,unendlich) --> R mit f(x)= (x-1)/(x ln (x)) ist monoton fallend

b, [mm] e^x(y-x) [/mm] < [mm] e^y- e^x [/mm] < [mm] e^y(y-x) [/mm] für x<y

c, gegeben seien die beiden stetigen Funktionen f,g[a,b]-->R, die auf (a,b) differenzierbar seien und f(a) = g(a). Man zeige die golgende Behauptung:
0 <(gleich) f´(x) < g´(x) auf 8a,b9 --> f(x) < g(x) auf (a,b]

bei a kann ich mir vorstellen, dass ich iwie die def von einer monoton fallenden funktion mit einbauen muss, aber wie genau das aussehen soll, da hab ich echt kein plan. wir habe zwar in der übung aufgaben zu dem mws gemacht,aber die sahen komplett anders aus :(

ich hoffe es kann mir jmd ein paar denkanstöße geben
einen schönen samstag noch

liebe grüße jule

        
Bezug
Mittelwertsatz: zu a)
Status: (Antwort) fertig Status 
Datum: 11:45 So 03.07.2011
Autor: M.Rex

Hallo

Zu Aufgabe a)

Zeige, dass [mm]\forall0 [mm] \frac{\overbrace{\frac{b-1}{b\cdot\ln(b)}}^{f(b)}-\overbrace{\frac{a-1}{a\cdot\ln(a)}}^{f(a)}}{b-a}<0 [/mm]

Marius


Bezug
        
Bezug
Mittelwertsatz: Eine Idee zu c)
Status: (Antwort) fertig Status 
Datum: 11:57 So 03.07.2011
Autor: M.Rex

Hallo

Zu Aufgabe c) mal folgende Idee, ob sie Funktioniert, weiss ich aber nicht, ich habe sie nicht zuende gedacht.

Es gilt für [mm] x\in[a;b] [/mm]

$ [mm] 0\leq f'(x)\leq [/mm] g'(x) $

Schreiben wir die Differenzierbarbkeitsdefinition mal hin:

$ [mm] 0\leq\limes_{b\to a}\frac{f(b)-f(a)}{b-a}\leq\limes_{b\to a}\frac{g(b)-g(a)}{b-a}$ [/mm]

Nun gilt: f(a)=g(a), aslo soll gelten:

$ [mm] 0\leq\limes_{b\to a}\frac{f(b)-g(a)}{b-a}\leq\limes_{b\to a}\frac{g(b)-g(a)}{b-a}$ [/mm]

Zeige, dass daraus f(x)<g(x) folgt.

Ich würde das mit einem Widerspruchsbeweis zu der Aussage des Mittelwertsatzes versuchen, aber wie gesagt, das ist nur eine Idee.

Marius


Bezug
        
Bezug
Mittelwertsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mo 04.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]