www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Mittelpunkt-&Radiusberechnung
Mittelpunkt-&Radiusberechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelpunkt-&Radiusberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 11:55 Di 16.11.2004
Autor: tomekk

Hallo!

Ich finde bei der 4. Teilaufgabe einer Aufgabe zur Mittelpunkt- und Radiusberechnung einer Kugel keinen Ansatz.

Die Aufgabe lautet:

"Bestimme den Mittelpunkt und den Radius der Kugel, welche die Ebene E in A berührt und durch den Punkt T(7/6/2) geht."

Die Ebenengleichung wurde vorher berechnet und lautet: E: x= [mm] \vektor{4 \\ 3\\-2}+v \vektor{-2 \\ -1\\2}+w \vektor{0 \\ -3\\3} [/mm]

A ist in der Aufgabe gegeben und hat die Koordinaten A(4/3/-2).

Wer kann mir dabei behilflich sein, den Ansatz bzw. den Lösungsweg zu finden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mittelpunkt-&Radiusberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Di 16.11.2004
Autor: Sigrid


> Hallo!

Hallo Tomekk

>  
> Ich finde bei der 4. Teilaufgabe einer Aufgabe zur
> Mittelpunkt- und Radiusberechnung einer Kugel keinen
> Ansatz.
>
> Die Aufgabe lautet:
>  
> "Bestimme den Mittelpunkt und den Radius der Kugel, welche
> die Ebene E in A berührt und durch den Punkt T(7/6/2)
> geht."
>  
> Die Ebenengleichung wurde vorher berechnet und lautet: E:
> x= [mm]\vektor{4 \\ 3\\-2}+v \vektor{-2 \\ -1\\2}+w \vektor{0 \\ -3\\3} [/mm]
>  
>
> A ist in der Aufgabe gegeben und hat die Koordinaten
> A(4/3/-2).

Das erste, was du brauchst, ist die Gleichung der Senkrechten s zur Ebene E durch den Punkt A. Ich gehe davon aus, dass du weißt, wie das geht.

Als mögliche Lösung ergibt sich
[mm] s: \vec x = \vektor {4\\3\\-2} + r \vektor {1\\2\\2} [/mm]

Der Mittelpunkt M der Kugel liegt auf s. Die Entfernung von M zu T ist dann gleich dem Abstand von M zur Ebene E (bzw. gleich der Entfernung zu A. Du kannst mit beidem rechnen.)

Du wählst also jetzt einen belliebigen Punkt M auf s, d.h. M lässt sich darstellen durch M(4+r/3+2r/-2+2r)
Wenn du jetzt die Abstände bestimmst und gleich setzt, bekommst du M. Der Rest ist dann klar.

Ich denke, das hilft dir weiter

>  
> Wer kann mir dabei behilflich sein, den Ansatz bzw. den
> Lösungsweg zu finden?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]