www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Minimum des Erwartungswertes
Minimum des Erwartungswertes < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum des Erwartungswertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Mo 26.05.2008
Autor: cauchy

Aufgabe
Es seien X,Y : [mm] \Omega \to \IR [/mm] Zufallsvariablen mit [mm] X^2, Y^2 \in L^1(\Omega,P). [/mm]
Für welche reellen Zahlen [mm] \alpha, \beta [/mm] ist [mm] E((Y-\alpha [/mm] X - [mm] \beta)^2) [/mm] minimal? Bestimmen Sie dieses Minimum.

Hallo!
Ich habe Probleme beim Lösen dieser Aufgabe...
Mein erster Ansatz war, dass man die Formel V(X) = [mm] E(X^2) [/mm] - [mm] E(X)^2 [/mm] ausnutzt. Diese habe ich umgestellt zu:
[mm] E(X^2) [/mm] = V(X) + [mm] E(X)^2 [/mm]
Meine Idee war, dieses auf meine Aufgabe wie folgt anzuwenden:
[mm] E((Y-\alpha [/mm] X - [mm] \beta)^2) [/mm] = [mm] V(Y-\alpha [/mm] X - [mm] \beta) [/mm] + [mm] E(Y-\alpha [/mm] X - [mm] \beta)^2 [/mm]
Danach habe ich weitergerechnet, indem ich alles linear auseinandergezogen habe... aber irgendwie wurde alles nur noch komplizierter :(
Bin ich auf der richtigen Spur oder muss man diese Aufgabe völlig anders angehen?
Über ein paar Ratschläge würde ich mich sehr freuen!
Ich habe diese Frage in keinem andren Internetforum gestellt.
Gruß, cauchy

        
Bezug
Minimum des Erwartungswertes: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Mo 26.05.2008
Autor: steffenhst

Hallo,

nur eine Idee als Alternative zur Anwendung des Verschiebesatzes. Einfach E bestimmen und das Minimum der entstandenen Funktion berechnen (also Ableitung bilden etc.).
Vielleicht bringt das ja etwas.

Grüße, Steffen  

Bezug
        
Bezug
Minimum des Erwartungswertes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mo 26.05.2008
Autor: Vreni

Hallo cauchy,

deine erste Umformung war schon ein Schritt in die richtige Richtung. Jetzt schreibst du, dass du alles linear auseinander gezogen hast. Dir ist klar, dass das bei der Varianz nicht so einfach möglich ist? [mm] (Var(X)=E((X-EX)^2)! [/mm]
Dafür kannst du eine andere Eigenschaft der Varianz ausnutzen: [mm] Var(Y-\alpha*X-\beta)=Var(Y-\alpha*X). [/mm]
D.h. dein erster Term hängt nur noch von [mm] \alpha [/mm] ab. Wenn du also das [mm] \alpha_{opt} [/mm] gefunden hast, für das der erste Term minimal ist, kannst du aus dem zweiten Term, [mm] (E(Y-\alpha_{opt}*X-\beta))^2, \beta_{opt} [/mm] so bestimmen, dass der zweite Term=0 wird.
Um das [mm] \alpha_{opt} [/mm] zu finden, forme am besten den ersten Term noch etwas um [mm] (Var(X)=E((X-EX)^2, [/mm] Rechenregeln für den Erwartungswert!), und leite ihn dann nach [mm] \alpha [/mm] ab.

Gruß,
Vreni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]