www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Minimierung in Maximierung
Minimierung in Maximierung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimierung in Maximierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 22.04.2015
Autor: Shaft87

Hallo,

welche Möglichkeiten gibt es, Minimierungsprobleme in Maximierungsprobleme umzuwandeln, außer einer Multiplikation mit -1?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Minimierung in Maximierung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mi 22.04.2015
Autor: Marcel

Hallo,

> Hallo,
>  
> welche Möglichkeiten gibt es, Minimierungsprobleme in
> Maximierungsprobleme umzuwandeln, außer einer
> Multiplikation mit -1?  

gib mal ein konkretes Beispiel (meinetwegen auch künstlich) an. Wenn es
um *Standardprobleme* geht, findet man eigentlich vieles dazu im Bereich
Operations Research.
Schau' etwa im Bereich: []Duales Problem.

Gruß,
  Marcel

Bezug
                
Bezug
Minimierung in Maximierung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:48 Mi 22.04.2015
Autor: Shaft87

Hallo,

vielen Dank für Deine schnelle Antwort!
Leider hilft mir der Link irgendwie nicht weiter. Kenne mich mit dem Thema nicht aus...

Ein konkretes Beispiel habe ich leider auch nicht. Es geht lediglich ganz allgemein um Möglichkeiten, Minimierungsprobleme in Maximierungsprobleme zu verwandeln.

Bezug
                        
Bezug
Minimierung in Maximierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Mi 22.04.2015
Autor: Marcel

Hallo,

> Hallo,
>  
> vielen Dank für Deine schnelle Antwort!
>  Leider hilft mir der Link irgendwie nicht weiter. Kenne
> mich mit dem Thema nicht aus...
>  
> Ein konkretes Beispiel habe ich leider auch nicht. Es geht
> lediglich ganz allgemein um Möglichkeiten,
> Minimierungsprobleme in Maximierungsprobleme zu verwandeln.

in welchem Zusammenhang wurde die Frage denn gestellt? Gibt es
wenigstens einen eingrenzenden Themenkomplex?

Gruß,
  Marcel

Bezug
                                
Bezug
Minimierung in Maximierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 22.04.2015
Autor: Shaft87

Also, kurz vorher haben wir uns mit simulated annealing besschäftigt, wo es ja um Minimierung geht. Jetzt geht es darum, wie man sowas auch für Maximierungsprobleme anwenden kann.
Als Beispiel ist hier angegeben:
min f(x) = max -f(x)

Bezug
                                        
Bezug
Minimierung in Maximierung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Do 23.04.2015
Autor: fred97


> Also, kurz vorher haben wir uns mit simulated annealing
> besschäftigt, wo es ja um Minimierung geht. Jetzt geht es
> darum, wie man sowas auch für Maximierungsprobleme
> anwenden kann.
>  Als Beispiel ist hier angegeben:
>  min f(x) = max -f(x)

Das ist i.a. falsch.

Richtig lautet das, falls Min. und Max. exisieren:

[mm] $-\min [/mm] f(x) = [mm] \max [/mm] (-f(x) )$


Beispiel: f:[0,1] [mm] \to \IR [/mm] sei def. durch f(x)=x+1.

Das Minimum von f auf [0,1] ist =1.

Das Maximum von  - f auf [0,1] ist =-1.

FRED


Bezug
                                                
Bezug
Minimierung in Maximierung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:22 Do 23.04.2015
Autor: Shaft87

OK, stimmt. Aber welche Möglichkeiten gibt es denn noch? Das war jetzt die Variante Multiplikation mit -1. Insgesamt müsste es mindestens 6 geben...
Hätte noch gedacht min f(x) => max e^-f(x).

Bezug
                                                        
Bezug
Minimierung in Maximierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 23.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]