Minimalpolynom & Jordan-NF < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:51 So 20.06.2010 | Autor: | peeetaaa |
Aufgabe | Man bestimme jeweils das char. Polynom und das Minimalpolynom, sowie die Jordan-Normalform der Folgenden Matrizen in [mm] \IC^{4x4} [/mm] , zusammen mit geeigneten Transformationsmatrizen.
F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm] |
Hallo zusammen,
da ich solche aufgaben noch nicht oft gemacht habe hoffe ich, dass mir jemand ein bisschen dabei helfen kann!
Also wollte jetzt zu der Matrix F zuerst das char. Polynom rauskriegen. Das ist ja [mm] (0-\lambda)^4 [/mm] = [mm] (-\lambda)^4 [/mm] = [mm] \lambda^4 [/mm] oder?
Dann das Minimalpolynom (damit hab ich besonders meine Schwierigkeiten)
hätte gedacht, dass das [mm] -\lambda [/mm] bzw nur [mm] \lambda [/mm] ist weil sich die MAtrix ja nicht verändert!
Dann zur JNF. Hier weiß ich ja schon durchs char. Polynom, dass der einzige Eigenwert [mm] \lambda=0 [/mm] ist, mit der algebr. Vielfachheit 4. Sodass ich weiß, dass die Länge der Jordanblocks zu diesem EW = 4 ist
da kein anderer EW vorhanden ist müsste die JNF ja quasi so aussehen:
F= [mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 }
[/mm]
Jetzt muss ja noch die Transformationsmatrizen bilden aber da bin ich ein bisschen ratlos:
Hab jetzt folgendes versucht:
(F-0*En) = F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }
[/mm]
[mm] (F-0*En)^2 [/mm] =F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]
usw.
Dann wollte ich dazu Basisvektoren rausbekommen aber es gilt doch eigentich
Kern(F-0*En)= [mm] \IR^4 [/mm] und das auch für [mm] Kern(F-0*En)^2 [/mm] usw. oder?
Naja und deshalb nicht wie ich hier weitermachen soll!
Kann mir da vllt jemand helfen?
Gruß,
peeetaaa
|
|
|
|
Wo hast du denn diese Matrix aufgetrieben? In deinem Beispiel ist es sinnlos danach zu fragen, denn der Nullmatrix ist es wurscht zu welcher Basis man sie aufstellt. Es ist und bleibt immer die Nullmatrix!
Aber vllt. ein paar Gedanken zu deiner Frage allgemein. Das charakteristische Polynom hast du richtig herausgefunden.
Das Minimalpolynom kann man ablesen, wenn man die Matrix solange potenziert, bis eine dieser Potenzen linear abhängig zu vorherigen Potenzen ist. Wenn z.B.
[mm] $A^3=2A^2-A+3\cdot 1_n$ [/mm] gilt. Dann ist dein Minimalpolynom [mm] $\mu_A=x^3-2x^2+x-3$
[/mm]
|
|
|
|