www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Minimalpolynom
Minimalpolynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 So 10.06.2012
Autor: quasimo

Aufgabe
Bestimme das Minimalpolynom der Matrix
A = [mm] \pmat{ 5&1&&&&&& \\ &5&1&&&&& \\&&5&0&&&&\\&&&5&1&&&\\&&&&5&0&&\\&&&&&5&1&\\&&&&&&5&1\\&&&&&&&5 } [/mm]


[mm] p_A [/mm] = [mm] (z-5)^8 [/mm]
-> Nustelle 5 mit algebraischer Vielfachheit 8

(A-5I) = [mm] \pmat{ 0&1&&&&&& \\ &0&1&&&&& \\&&0&0&&&&\\&&&0&1&&&\\&&&&0&0&&\\&&&&&0&1&\\&&&&&&0&1\\&&&&&&&0 } [/mm]

Miniampolynom Teiler von [mm] p_a, [/mm] aber besitzt auch dessen Nullstelle.
Minialpolynom = [mm] m_A [/mm]

[mm] m_a \in J_A [/mm]
[mm] deg(m_A) [/mm] <= deg(p) für jedes 0 [mm] \not= [/mm] p [mm] \in J_A [/mm]
[mm] J_a [/mm] := [mm] \{ p \in \IK[z]| p(A)=0 \}\not= \{0\} [/mm]

Soweit die def, aber wie berechne ich dieses?

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 10.06.2012
Autor: kamaleonti

Hallo,
> Bestimme das Minimalpolynom der Matrix
>  A = [mm]\pmat{ 5&1&&&&&& \\ &5&1&&&&& \\&&5&0&&&&\\&&&5&1&&&\\&&&&5&0&&\\&&&&&5&1&\\&&&&&&5&1\\&&&&&&&5 }[/mm]

Diese Matrix ist in Jordan-Normalform, damit kannst Du das Minimalpolynom direkt ablesen!

>  
> [mm]p_A[/mm] = [mm](z-5)^8[/mm]
> -> Nustelle 5 mit algebraischer Vielfachheit 8
>  
> (A-5I) = [mm]\pmat{ 0&1&&&&&& \\ &0&1&&&&& \\&&0&0&&&&\\&&&0&1&&&\\&&&&0&0&&\\&&&&&0&1&\\&&&&&&0&1\\&&&&&&&0 }[/mm]
>  
> Miniampolynom Teiler von [mm]p_a,[/mm] aber besitzt auch dessen
> Nullstelle.
>  Minialpolynom = [mm]m_A[/mm]
>  
> [mm]m_a \in J_A[/mm]
>  [mm]deg(m_A)[/mm] <= deg(p) für jedes 0 [mm]\not=[/mm] p [mm]\in J_A[/mm]
>  
> [mm]J_a[/mm] := [mm]\{ p \in \IK[z]| p(A)=0 \}\not= \{0\}[/mm]
>  
> Soweit die def, aber wie berechne ich dieses?

Entweder über die Jordannormalform, oder indem Du die die Matrizen [mm] (A-5I)^k [/mm] berechnest für k=1,2,...

Aber der erste Weg ist hier klar der einfachere.

LG


Bezug
                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 So 10.06.2012
Autor: quasimo

Jordanform

3 Blöcke der Größe 3,2,3
Wie lese ich das nun ab?

Bezug
                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 10.06.2012
Autor: kamaleonti


> Jordanform
>  
> 3 Blöcke der Größe 3,2,3
>  Wie lese ich das nun ab?

Hast du das nicht in deinen Unterlagen stehen ?

Nimm zu jedem Eigenwert  [mm] \lambda [/mm] den größten Block mit Größe d.
Der Faktor [mm] (x-\lambda) [/mm] taucht im Minimalpolynom mit Vielfachheit d auf.

LG

Bezug
                                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 So 10.06.2012
Autor: quasimo


> Nimm zu jedem Eigenwert  $ [mm] \lambda [/mm] $ den größten Block mit Größe d.
> Der Faktor $ [mm] (x-\lambda) [/mm] $ taucht im Minimalpolynom mit Vielfachheit d auf.

Es gibt nur einen Eigenwert5
größte Block ist 3
[mm] m_A [/mm] = [mm] (\lambda-5)^3 [/mm]

Bezug
                                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mo 11.06.2012
Autor: kamaleonti


> > Nimm zu jedem Eigenwert  [mm]\lambda[/mm] den größten Block mit
> Größe d.
>  > Der Faktor [mm](x-\lambda)[/mm] taucht im Minimalpolynom mit

> Vielfachheit d auf.
>
> Es gibt nur einen Eigenwert5
>  größte Block ist 3
>  [mm]m_A[/mm] = [mm](\lambda-5)^3[/mm]  

Korrekt [ok]

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]