www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Minimalpolynom
Minimalpolynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Do 10.12.2009
Autor: johnny11

Aufgabe
Sei c= [mm] e^{\bruch{2\pi*i}{5}}. [/mm] Finde das Minimalpolynom von

a) c + [mm] c^{-1} [/mm] über [mm] \IQ [/mm]

b) c über [mm] \IQ(c [/mm] + [mm] c^{-1}). [/mm]

Habe gerade nich so eine Ahnung, wie ich vorgehen könnte.
also klar ist ja, dass [mm] c^{-1} [/mm] = [mm] c^4 [/mm] ist.
Doch muss ich dann einfach ausprobieren? oder gibt es einen besseren Weg?

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Do 10.12.2009
Autor: felixf

Hallo!

> Sei c= [mm]e^{\bruch{2\pi*i}{5}}.[/mm] Finde das Minimalpolynom von

Kennst du das Minimalpolynom von $c$ ueber [mm] $\IQ$? [/mm]

> a) c + [mm]c^{-1}[/mm] über [mm]\IQ[/mm]
>  
> b) c über [mm]\IQ(c[/mm] + [mm]c^{-1}).[/mm]
>  
> Habe gerade nich so eine Ahnung, wie ich vorgehen könnte.
>  also klar ist ja, dass [mm]c^{-1}[/mm] = [mm]c^4[/mm] ist.

Ja, da [mm] $c^5 [/mm] = 1$ ist.

>  Doch muss ich dann einfach ausprobieren? oder gibt es
> einen besseren Weg?

Man kann erstmal nachdenken. Da das Minimalpolynom von $c$ ueber [mm] $\IQ$ [/mm] den Grad 4 hat, muss das Minimalpolynom von $c + [mm] c^{-1}$ [/mm] entweder Grad 1, 2 oder 4 haben: betrachte den Koerperturm [mm] $\IQ \subseteq \IQ(c [/mm] + [mm] c^{-1}) \subseteq \IQ(c)$. [/mm]

Versuche also, ein Polynom von Grad 2 zu finden mit $c + [mm] c^{-1}$ [/mm] als Nullstelle. Dazu rechnest du $(c + [mm] c^{-1})^2$ [/mm] aus und versuchst es in der Form $a (c + [mm] c^{-1}) [/mm] + b$ mit $a, b [mm] \in \IQ$ [/mm] zu schreiben: dann ist [mm] $x^2 [/mm] - a x - b$ ein passendes Polynom.

Wenn das so ist, muss das Minimalpolynom von $c$ ueber [mm] $\IQ(c [/mm] + [mm] c^{-1})$ [/mm] ebenfalls Grad 2 haben. Versuche ein normiertes Polynom von Grad 2 mit Koeffizienten in $c + [mm] c^{-1}$ [/mm] zu finden, welches $c$ als Nullstelle hat; dieses ist dann das Minimalpolynom.

Und "versuchen zu finden" heisst, du musst rumprobieren. Mach dir die Finger schmutzig, indem du konkret rumrechnest und probierst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]