www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Bestimmung des Minimalpolynoms
Status: (Frage) beantwortet Status 
Datum: 11:29 Do 24.04.2008
Autor: JulianTa

Aufgabe
Sei A [mm] \in Mat(3x3,\IR) [/mm]
A= [mm] \pmat{ 1 & 1 & 0 \\ 0&1&0 \\ 0&0&1 }, A^2= \pmat{ 1&2&0 \\ 0&1&0 \\ 0&0&1}= [/mm] 2A - [mm] 1*E_3 [/mm]
Bestimme das Minimalpolynom!

Hallo! in der Vorlesung hatten wir dieses Beispiel. Ich verstehe leider folgende  Lösung überhaupt nicht, und würde gern wissen, wie ich das Minimalpolynom bestimme. Leider können mir die Kommilitonen auch nicht weiterhelfen, mit denen ich zu tun habe.
Also die Lösung des Profs war:

"Weil A kein Vielfaches der Einheitsmatrix ist, gibt es kein Polynom vom Grad 1, welches A als Nullstelle hat. Also ist q= [mm] t^2 [/mm] - 2t + 1 das Minimalpolynom."

Vielen Dank


        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 24.04.2008
Autor: angela.h.b.


> Sei A [mm]\in Mat(3x3,\IR)[/mm]
>  A= [mm]\pmat{ 1 & 1 & 0 \\ 0&1&0 \\ 0&0&1 }, A^2= \pmat{ 1&2&0 \\ 0&1&0 \\ 0&0&1}=[/mm]
> 2A - [mm]1*E_3[/mm]
>  Bestimme das Minimalpolynom!
>  Hallo! in der Vorlesung hatten wir dieses Beispiel. Ich
> verstehe leider folgende  Lösung überhaupt nicht, und würde
> gern wissen, wie ich das Minimalpolynom bestimme. Leider
> können mir die Kommilitonen auch nicht weiterhelfen, mit
> denen ich zu tun habe.
>  Also die Lösung des Profs war:
>  
> "Weil A kein Vielfaches der Einheitsmatrix ist, gibt es
> kein Polynom vom Grad 1, welches A als Nullstelle hat. Also
> ist q= [mm]t^2[/mm] - 2t + 1 das Minimalpolynom."

Hallo,

ich gehe davon aus, daß Du weißt, was das Minimimalpolynom ist.

Wäre das von A vom Grad 1, so hätte es die Gestalt p(x)=x+a.

Wenn das das Minipol wäre, wäre [mm] Nullmatrix=A+a*E_3, [/mm] dh.     [mm] a=-aE_3. [/mm]
Dies ist nicht der Fall.
Also ist das Minimalpolynom mindestens vom Grad 2.

Es ist [mm] A^2= [/mm] 2A - [mm]1*E_3[/mm], dh. [mm] Nullmatrix=A^2 [/mm] - 2A - [mm] 1*E_3. [/mm]
Also ist A Nullstelle von [mm] q(x)=x^2-2x-1. [/mm]
Somit ist das Minimalpolynom höchstens vom Grad 2.

Insgesamt hat man: das Minipol ist vom Grad 2, und da es eindeutig bestimmt ist, ist [mm] q(x)=x^2-2x-1 [/mm] das Minimalpolynom.

Gruß v. Angela

Bezug
        
Bezug
Minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Sa 26.04.2008
Autor: Annanna

La 2 beim Kebekus, stimmts? :)

Leider versteh ich auch nicht was er uns damit sagen wollte...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]