www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Sa 04.03.2006
Autor: Rhia

Aufgabe
Es sei [mm]2 \le n \in \IN[/mm] und [mm]A\in \IC^{n \times n}[/mm]. Das Minimalpolynom [mm] \mu_A[/mm] von A sei gleich [mm] \produkt_{i=1}^{k} (X- \alpha_i)[/mm] für ein [mm]k \in \IN[/mm] mit [mm]1 \le k \le n[/mm] und es gelte [mm] \alpha_i \not= \alpha_j[/mm] für [mm]i\not= j[/mm] und [mm] \alpha_i^{n_i}=1[/mm] für gewisse [mm]1\le n_i \in \IN[/mm] und alle [mm]1 \le i \le k[/mm]. Zeigen Sie, dass es ein [mm]1 \le m \in \IN[/mm] gibt, für  das [mm]A^m = E_n[/mm] ist.

Hallo,

ich lerne gerade La für eine Klausur und bei der Aufgabe weiß ich einfach nicht so recht weiter. also ich meine, ich weiß ja, dass A diagonalisierbar ist aber irgendwie weiß ich da grad wirklich nicht weiter. Und ich habe noch eine Aufgabe wo ich einfach kein Packan finden will, aber ich eröffne dazu einen neuen Frageatikel.
Danke im voraus.

Rhia


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Sa 04.03.2006
Autor: felixf


> Es sei [mm]2 \le n \in \IN[/mm] und [mm]A\in \IC^{n \times n}[/mm]. Das
> Minimalpolynom [mm]\mu_A[/mm] von A sei gleich [mm]\produkt_{i=1}^{k} (X- \alpha_i)[/mm]
> für ein [mm]k \in \IN[/mm] mit [mm]1 \le k \le n[/mm] und es gelte [mm]\alpha_i \not= \alpha_j[/mm]
> für [mm]i\not= j[/mm] und [mm]\alpha_i^{n_i}=1[/mm] für gewisse [mm]1\le n_i \in \IN[/mm]
> und alle [mm]1 \le i \le k[/mm]. Zeigen Sie, dass es ein [mm]1 \le m \in \IN[/mm]
> gibt, für  das [mm]A^m = E_n[/mm] ist.
>  Hallo,
>  
> ich lerne gerade La für eine Klausur und bei der Aufgabe
> weiß ich einfach nicht so recht weiter. also ich meine, ich
> weiß ja, dass A diagonalisierbar ist aber irgendwie weiß

Das ist schonmal gut. Also gibt es eine invertierbare Matrix $T$ und eine Diagonalmatrix $D$ mit $D = T A [mm] T^{-1}$. [/mm] Weisst du, was auf der Diagonalen von $D$ fuer Eintraege stehen?

> ich da grad wirklich nicht weiter. Und ich habe noch eine
> Aufgabe wo ich einfach kein Packan finden will, aber ich
> eröffne dazu einen neuen Frageatikel.

Probier doch mal $m = [mm] \prod_{i=1}^k n_i$ [/mm] aus: [mm] $A^m [/mm] = [mm] (T^{-1} [/mm] D [mm] T)^m [/mm] = [mm] D^m [/mm] = ...$ (ueberleg dir insbesondere, warum das zweite Gleichheitszeichen gilt!).

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]