www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Mini. einer Querschittsfläche
Mini. einer Querschittsfläche < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mini. einer Querschittsfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 So 27.11.2005
Autor: muellert2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, zu der folgenden Aufgabenstellung bekomme ich keinen Ansatz:

Der Querschnitt eines unterirdischen Abwasserkanals soll die Form eines Rechtecks mit aufgesetztem Halbkreis besitzen.
Wie muss das Verhältnis Höhe zu Breite des Rechtecks, gewählt werden, damit bei gegebener Querschnittsfläche des Kanals (Fassungsvermögen) möglichst wenig Material zur Ausmauerung (des Umfangs des Querschnitts) benötigt wird?

Gegeben ist eine Zeichnung mit einem Halbkreis, der auf ein Rechteck (h/b) gesezt ist.

Berechung des Umfangs = 2h+b+b(pi) habe ich. Jetzt weiss ich jedoch nicht, wie ich das Minimum bestimmen soll?

Danke für die Hilfe!

        
Bezug
Mini. einer Querschittsfläche: Ansätze
Status: (Antwort) fertig Status 
Datum: 11:33 So 27.11.2005
Autor: Loddar

Hallo muellert,

[willkommenmr] !!


Deine Umfangsformel hat leider noch einen Fehler. Es muss heißen:

$U(h,b) \ = \ 2h + b + [mm] \bruch{\pi*b}{\red{2}}$ [/mm]

Schließlich hängt ja auch nur ein halber Kreis dran ....


Und wie lautet die Formel für den Flächeninhalt dieses Querschnittes?

$A \ = \ h*b + [mm] \bruch{1}{2}*\bruch{\pi*b^2}{4} [/mm] \ = \ h*b + [mm] \bruch{\pi*b^2}{8}$ [/mm]


Wenn Du nun die Flächenformel umstellst nach $h \ = \ ...$ und anschließend einsetzt in die Umfangsformel, hast Du eine Funktion, die nur noch von einer Variable abhängig ist: $U \ = \ U(b)$ (der Flächeninhalt $A_$ wird dabei als konstant angesehen).


Nun kannst Du wie herkömmlich Deine Extremwertberechnung (Nullstellen der 1. Ableitung etc.) durchführen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]