www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - MinPolynom einer Matrix
MinPolynom einer Matrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MinPolynom einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Di 12.05.2009
Autor: ZodiacXP

Aufgabe
Berechne Min-Polynom von
$ [mm] \pmat{0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \in [/mm] M(3 [mm] \times [/mm] 3, [mm] \mathbb{Q}) [/mm] $

Bisschen geguckt, rumprobiert und dachte mir vielleicht ist das das Min-Polynom:

$P(A) = [mm] A^4 [/mm] - 2 [mm] \cdot [/mm] A$

Scheint auch zu passen aber durch raten macht man das bestimmt nicht.
Gibt es da ein System? Einen Algorithmus?

        
Bezug
MinPolynom einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Di 12.05.2009
Autor: angela.h.b.


> Berechne Min-Polynom von
>  [mm]\pmat{0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \in M(3 \times 3, \mathbb{Q})[/mm]
>  
> Bisschen geguckt, rumprobiert und dachte mir vielleicht ist
> das das Min-Polynom:
>  
> [mm]P(A) = A^4 - 2 \cdot A[/mm]
>  
> Scheint auch zu passen aber durch raten macht man das
> bestimmt nicht.
>  Gibt es da ein System? Einen Algorithmus?

Hallo,

das, was Du da gefunden hast, ist sicher nicht das Minimalpolynom.

Weißt Du denn, wie das Minimalpolynom einer Matrix definiert ist?

Zum Finden des Minimalpolynoms: das Minimalpolynom ist ein Teiler des charakteristischen Polynoms, welcher sämtliche Nullstellen mit dem charakteristischen Polynom gemeinsam hat - möglicherweise in kleinerer Vielfachheit.

Der Weg zum Minimalpolynom führt also bei gezielter Suche über das charakteristische Polynom.

Gruß v. Angela


Bezug
                
Bezug
MinPolynom einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Di 12.05.2009
Autor: ZodiacXP

Ok. E sei Einheitsmatrix.

$ [mm] p_A [/mm] = det(A - [mm] \lambda [/mm] E) = [mm] \vmat{ -\lambda & 0 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } [/mm] = [mm] \vmat{ 0 & - \lambda^2 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } [/mm] = - [mm] \vmat{ 1 & -\lambda & 0 \\ 0 & - \lambda^2 & 2 \\ 0 & 1 & -\lambda } [/mm] = - [mm] \vmat{1} \cdot \vmat{- \lambda^2 & 2 \\ 1 & -\lambda} [/mm] = 2 - [mm] \lambda^3 [/mm] $

Teiler? Sehe keine. Gibt keine weiteren Nullstellen außer [mm] ($\wurzel[3]{2}$) [/mm]

Bleibt also bei $ 2 - [mm] \lambda^3 [/mm] $.
Hui. Ich liebe es. Mathe / LinA ist stumpf.

Jetz habe ich nur noch Probleme damit:

Ist das ein Problem, dass die Nullstellen [mm] ($\wurzel[3]{2}$) [/mm] außerhalb von [mm] $\mathbb{Q}$ [/mm] sind?

Und soll man die 2 ansehen als 2*E? (Weil $ 2*E - [mm] A^3 [/mm] = 0 $)

Bezug
                        
Bezug
MinPolynom einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Di 12.05.2009
Autor: schachuzipus

Hallo ZodiacXP,

> Ok. E sei Einheitsmatrix.
>  
> [mm]p_A = det(A - \lambda E) = \vmat{ -\lambda & 0 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } = \vmat{ 0 & - \lambda^2 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda } = - \vmat{ 1 & -\lambda & 0 \\ 0 & - \lambda^2 & 2 \\ 0 & 1 & -\lambda } = - \vmat{1} \cdot \vmat{- \lambda^2 & 2 \\ 1 & -\lambda} = 2 - \lambda^3[/mm] [ok]
>  
> Teiler? Sehe keine.

Na, echt nicht? Ich sehe einen ...

Es teilt sich ja selber!

> Gibt keine weiteren Nullstellen außer
> ([mm]\wurzel[3]{2}[/mm])
>  
> Bleibt also bei [mm]2 - \lambda^3 [/mm].
>  Hui. Ich liebe es. Mathe /
> LinA ist stumpf.
>  
> Jetz habe ich nur noch Probleme damit:
>  
> Ist das ein Problem, dass die Nullstellen ([mm]\wurzel[3]{2}[/mm])
> außerhalb von [mm]\mathbb{Q}[/mm] sind?

Eben, dass charakt. Polynom hat über [mm] $\IQ$ [/mm] keine NST(en), damit auch keinen echten Teiler, damit ist MinPol=charPol

>  
> Und soll man die 2 ansehen als 2*E? (Weil [mm]2*E - A^3 = 0 [/mm]) [ok]

Ja, $A$ ist immer NST des MinPol


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]