Min < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:37 Mo 24.01.2011 | Autor: | pyw |
Aufgabe | Seien f, g stetige Funktionen von [mm] \IR\to\IR. [/mm] Zeigen Sie, dass auch die Funktion [mm] x\mapsto \min\{f(x), g(x)\} [/mm] stetig ist |
Hi,
Eine Funktion F ist genau dann in [mm] x_0 [/mm] stetig, wenn für jede gegen [mm] x_0 [/mm] konvergente Folge aus dem Definitionsbereich gilt, dass die Folge ihrer Bilder gegen [mm] F(x_0) [/mm] konvergiert.
Also nach Voraussetzung (Stetigkeit in [mm] x_0):
[/mm]
[mm]x_n\to x_0 \Rightarrow f(x_n)\to f(x_0), g(x_n)\to g(x_0)[/mm]
Es gilt [mm]\min(x)=\frac{f(x)+g(x)-|f(x)-g(x)|}{2} [/mm] und damit [mm]\min(x_n)=\frac{f(x_n)+g(x_n)-|f(x_n)-g(x_n)|}{2}\to \frac{f(x_0)+g(x_0)-|f(x_0)-g(x_0)|}{2}=\min(x_0), n\to\infty [/mm] [/mm]. Also ist die Funktion [mm] \min [/mm] in [mm] x_0 [/mm] stetig. Aus der Beliebigkeit von [mm] x_0 [/mm] folgt die Stetigkeit im gesamten Definitionsbereich.
Meine Frage: Ist dieser Beweis korrekt, bzw. sollte ich noch etwas deutlicher machen?
mfg pyw
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:14 Mo 24.01.2011 | Autor: | fred97 |
> Seien f, g stetige Funktionen von [mm]\IR\to\IR.[/mm] Zeigen Sie,
> dass auch die Funktion [mm]x\mapsto \min\{f(x), g(x)\}[/mm] stetig
> ist
> Hi,
>
> Eine Funktion F ist genau dann in [mm]x_0[/mm] stetig, wenn für
> jede gegen [mm]x_0[/mm] konvergente Folge aus dem Definitionsbereich
> gilt, dass die Folge ihrer Bilder gegen [mm]F(x_0)[/mm] konvergiert.
>
> Also nach Voraussetzung (Stetigkeit in [mm]x_0):[/mm]
> [mm]x_n\to x_0 \Rightarrow f(x_n)\to f(x_0), g(x_n)\to g(x_0)[/mm]
>
> Es gilt [mm]\min(x)=\frac{f(x)+g(x)-|f(x)-g(x)|}{2}[/mm] und damit
> [mm]\min(x_n)=\frac{f(x_n)+g(x_n)-|f(x_n)-g(x_n)|}{2}\to \frac{f(x_0)+g(x_0)-|f(x_0)-g(x_0)|}{2}=\min(x_0), n\to\infty[/mm]
> [/mm]. Also ist die Funktion [mm]\min[/mm] in [mm]x_0[/mm] stetig. Aus der
> Beliebigkeit von [mm]x_0[/mm] folgt die Stetigkeit im gesamten
> Definitionsbereich.
>
> Meine Frage: Ist dieser Beweis korrekt,
wenn Du mit $ [mm] \min(x) [/mm] $ meinst $ [mm] \min(x)= \min\{f(x), g(x)\} [/mm] $, ist alles prima
FRED
> bzw. sollte ich
> noch etwas deutlicher machen?
>
> mfg pyw
|
|
|
|