www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Min-Max- Aufgabe
Min-Max- Aufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Min-Max- Aufgabe: Lösung von Min-Max-Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:07 Mi 21.11.2012
Autor: Victoria_17

Aufgabe
Es ist die Funktion fa(x)=ax*(x+1)(x+3).

Die Punkte A(-1/0), B(u/0) und C(u/f-2(u)) bilden für -1<u>0 ein Dreieck.
Für welches u ist der Flächeninhalt dieses Dreiecks maximal?

Hallo,
es wäre echt lieb, wenn mir jemand helfen könnte. Ich weiß leider gar nicht wie man diese Min-Max-Aufgabe lösen soll.
Habe es zwar versucht, bin aber nicht auf das richtige Ergebnis gekommen.
Mich würden Tipps/ Ansatz wie ich auf die Lösung komme, sehr freuen.

Gruß Victoria



        
Bezug
Min-Max- Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Mi 21.11.2012
Autor: Victoria_17


> Es ist die Funktion fa(x)=ax*(x+1)(x+3).
>  
> Die Punkte A(-1/0), B(u/0) und C(u/f-2(u)) bilden für -1<u<0
> ein Dreieck.
>  Für welches u ist der Flächeninhalt dieses Dreiecks
> maximal?
>  Hallo,
>  es wäre echt lieb, wenn mir jemand helfen könnte. Ich
> weiß leider gar nicht wie man diese Min-Max-Aufgabe lösen
> soll.
>  Habe es zwar versucht, bin aber nicht auf das richtige
> Ergebnis gekommen.
>  Mich würden Tipps/ Ansatz wie ich auf die Lösung komme,
> sehr freuen.
>  
> Gruß Victoria
>  
>  


Bezug
        
Bezug
Min-Max- Aufgabe: Skizze machen
Status: (Antwort) fertig Status 
Datum: 17:14 Mi 21.11.2012
Autor: Loddar

Hallo Victoria!


Es wäre schön, wenn Du uns auch zeigen würdest, was Du bisher und wie versucht hast.

Bei derartigen Aufgaben ist das Anfertigen einer Skizze mit der Funktionskurve, den gegebenen Punkten und eines Dreieckes unerlässlich.

Aus dieser Skizze solltest Du dann nämlich eine Funktion für den Flächeninhalt des Dreieckes $A(u) \ = \ ...$ aufstellen können.


Gruß
Loddar


PS: Wie lautet der y-Wert des Punktes $C_$ genau? Da scheint sich ein Tippfehler eingeschlichen zu haben.
Gibt es Angaben zum Parameter $a_$ ?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]