www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Metrische Normalform
Metrische Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrische Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:26 Do 24.05.2012
Autor: roydebatzen

Hi, ich habe folgende Aufgabenstellungen:


Aufgabe 2:
Wir betrachten den euklidischen Vektorraum R2 mit Standardskalarprodukt als reelle Ebene.
Wir fixieren für ein a ∈ R ∖ {0} die beiden Punkte (−a, 0) und (a, 0) auf der x1 -Achse. Eine Ellipse (bzw. Hyperbel) ist die Menge aller Punkte (x1 , x2 ) in der Ebene mit der Eigenschaft,
dass die Summe (bzw. Differenz) der Abstände von (x1 , x2 ) zu den Punkten (−a, 0) und (a, 0) konstant ist. Zeigen Sie, dass die oben beschriebenen Punktmengen einer Gleichung
mit jeweils geeigneten Zahlen a1 , a2 ∈ R genügt.

Aufgabe 3:
In der Situation von Aufgabe 2 betrachten wir für ein a ∈ R ∖ {0} den Punkt (0, a) auf der
x2 -Achse. Die Menge aller Punkte (x1 , x2 ) in der Ebene mit der Eigenschaft, dass (x1 , x2 ) zu (0, a) denselben Abstand hat wie zur x1 -Achse, nennen wir eine Parabel. Zeigen Sie, dass die so beschriebene Punktmenge durch die Gleichung der Form
[mm] \bruch{x_{1}^{2}}{a_{1}^{2}} [/mm] + [mm] \bruch{x_{2}^{2}}{a_{2}^{2}} [/mm] = 1 (bzw. [mm] \bruch{x_{1}^{2}}{a_{1}^{2}} [/mm] - [mm] \bruch{x_{2}^{2}}{a_{2}^{2}} [/mm] = 1)
mit geeigneten Zahlen a1 , a2 ∈ R gegeben ist.

Aufgabe 4:
Wir betrachten die im R2 gegebene Hyperfläche 2.Ordnung
[mm] H={\vektor{x_{1} \\ x_{2}} ∈ \IR^{2} |8/5x_{1}^{2} +12/5 x_{1}x_{2} + 17/5 x_{2}^{2} -4\wurzel{5}x_{1} -6 \wurzel{5} x_{2}+13=0} [/mm]
Bestimmen Sie den Typ von H, indem Sie die metrische Normalform der definierenden Gleichung
berechnen.


Mir liegt folgendes Skript vor:
http://www.mathematik.uni-kassel.de/~koepf/LineareAlgebra/skript-LA2.pdf

Meine Frage ist jetzt:

Im Skript wird unter Kapitel 3 im Unterpunkt Hyperflächen 2.Ordnung wird im Spezialfall für [mm] R^2 [/mm] die Ellipse und die Parabel genannt.
Ich habe die letzte Aufgabe praktisch gelöst, aber wie komme ich in den beiden Aufgaben davor auf die Form das ich das Verfahren anwenden kann.


Aso bzw. wie bekomme ich aus den Aufgabenstellungen die Form:
(x1,x2)*A*(x1,x2)+(b1,b2)*(x1,x2) +c =0

        
Bezug
Metrische Normalform: Korrektur; Was ist z.z.?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Do 24.05.2012
Autor: triad


> Hi, ich habe folgende Aufgabenstellungen:
>  
>
> Aufgabe 2:
> ...
> ) zu den Punkten (−a, 0) und (a, 0) konstant ist. Zeigen
> Sie, dass die oben beschriebenen Punktmengen einer
> Gleichung (1)
>  mit jeweils geeigneten Zahlen a1 , a2 ∈ R genügt.
>  
> Aufgabe 3:
>  In der Situation von Aufgabe 2 betrachten wir für ein a
> ∈ R ∖ {0} den Punkt (0, a) auf der
>  x2 -Achse. Die Menge aller Punkte (x1 , x2 ) in der Ebene
> mit der Eigenschaft, dass (x1 , x2 ) zu (0, a) denselben
> Abstand hat wie zur x1 -Achse, nennen wir eine Parabel.
> Zeigen Sie, dass die so beschriebene Punktmenge durch die
> Gleichung der Form
>  [mm]\bruch{x_{1}^{2}}{a_{1}^{2}}[/mm] +
> [mm]\bruch{x_{2}^{2}}{a_{2}^{2}}[/mm] = 1 (bzw.
> [mm]\bruch{x_{1}^{2}}{a_{1}^{2}}[/mm] - [mm]\bruch{x_{2}^{2}}{a_{2}^{2}}[/mm]
> = 1)
>  mit geeigneten Zahlen a1 , a2 ∈ R gegeben ist.
>  

1. Du hast bei (1) die Gleichung vergessen.
2. An die Stelle (1) gehört die Gleichung aus Aufgabe 3 und zu Aufgabe 3 gehört die Gleichung [mm] $x_1^2+a_1x_2=a_2.$ [/mm]


> Meine Frage ist jetzt:
>  
> Im Skript wird unter Kapitel 3 im Unterpunkt Hyperflächen
> 2.Ordnung wird im Spezialfall für [mm]R^2[/mm] die Ellipse und die
> Parabel genannt.
>  Ich habe die letzte Aufgabe praktisch gelöst, aber wie
> komme ich in den beiden Aufgaben davor auf die Form das ich
> das Verfahren anwenden kann.
>  
> Aso bzw. wie bekomme ich aus den Aufgabenstellungen die
> Form:
>  (x1,x2)*A*(x1,x2)+(b1,b2)*(x1,x2) +c =0

Ich glaube nicht wirklich, dass man hier noch zweimal dasselbe rechnen soll wie in Aufgabe 4, eher, dass man zeigen soll, dass die jeweils beschriebene Menge der darunter angegebenen Gleichung entspricht.






Bezug
                
Bezug
Metrische Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:42 So 27.05.2012
Autor: triad

Aufgabe
Aufgabe 2:
Wir betrachten den euklidischen Vektorraum [mm] \IR^2 [/mm] mit Standardskalarprodukt als reelle Ebene. Wir fixieren für ein [mm] a\in\IR\setminus\{0\} [/mm] die beiden Punkte (−a,0) und (a,0) auf der [mm] $x_1$-Achse. [/mm] Eine Ellipse (bzw. Hyperbel) ist die Menge aller Punkte [mm] (x_1,x_2) [/mm] in der Ebene mit der Eigenschaft, dass die Summe (bzw. Differenz) der Abstände von [mm] (x_1,x_2) [/mm] zu den Punkten (−a,0) und (a,0) konstant ist. Zeigen Sie, dass die oben beschriebenen Punktmengen einer Gleichung

$ [mm] \bruch{x_{1}^2}{a_{1}^{2}} [/mm] + [mm] \bruch{x_{2}^{2}}{a_{2}^{2}} [/mm] = 1 $ (bzw. $ [mm] \bruch{x_{1}^{2}}{a_{1}^{2}} [/mm] - [mm] \bruch{x_{2}^{2}}{a_{2}^{2}} [/mm] = 1 $)


mit jeweils geeigneten Zahlen [mm] a_1,a_2\in\IR [/mm] genügt.

Oben nochmal die korrekte Aufgabenstellung. Hat jemand eine Idee wie man hier rangehen könnte?

Ich habe bisher versucht die Menge aus dem Text in Formeln zu fassen,

Die Menge M $ := $ $ [mm] \{(x_1,x_2)\in\IR^2: |(x_1,x_2)-(a,0)|+|(x_1,x_2)-(-a,0)|=c\} [/mm] $ soll also der Gleichung $ [mm] \bruch{x_{1}^2}{a_{1}^{2}} [/mm] + [mm] \bruch{x_{2}^{2}}{a_{2}^{2}} [/mm] = 1 $ entsprechen,

und die Gleichung in der Menge zur Ellipsen-Gleichung umzuformen, komme da aber nicht weiter.

Wäre nett wenn sich nochmal jemand die Mühe machen würde.

Bezug
                        
Bezug
Metrische Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 29.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Metrische Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 26.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]