Metrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:12 Fr 25.01.2008 | Autor: | Zerwas |
Aufgabe | Auf [mm] \IR [/mm] werde eine Metrik [mm] \delta [/mm] definiert durch
[mm] \delta(x,y) [/mm] = arctan|x-y|.
Man zeige, dass [mm] \delta [/mm] die Axiome einer Metrik erfüllt und, dass die offenen Mengen bzgl. dieser Metrik dieselben sind wie bzgl. der üblichen Metrik d(x,y) = |x-y|. |
Zum ersten Teil habe ich mir überlegt:
[mm] \delta(x,y)=0 \gdw [/mm] x=y ist klar, da der arctan nur die Nullstelle im Ursprung also bei 0 = |x-x| hat.
Dann, dass [mm] \delta(x,y) [/mm] = [mm] \delta(y,x) [/mm] ergibt sich daraus, dass der arctan stetig ist und |x-y|=|y-x|
Die Dreiecksungleichung folgt aus der Monotonie von arctan und aus der Dreiecksungleichung für den Betrag. Also:
arctan|x-z| [mm] \le [/mm] arctan|x-y| + arctan|y-z|, da |x-z| [mm] \le [/mm] |x-y| + |y-z| und da arctan x [mm] \le [/mm] arctan y für x [mm] \le [/mm] y.
Die offenen Mengen kann man auch einfach übertragen, da der arctan ja an den Relationen zwischen den Mengen nichts ändern außer sie zu "strecken" oder zu "stauchen". oder?
Ich würde hier einfach die Beispiele für offene Mengen durchgehen die in [mm] \IR [/mm] existieren.
(a,b), [mm] (a,\infty), (-\infty,b), \emptyset, \IR [/mm] und die daraus resultierenden Vereinigungen.
Aber eigentlich reicht doch die Begründung, dass der arctan monoton wächst und stetig ist oder?
Gruß Zerwas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:48 Fr 25.01.2008 | Autor: | Marcel |
Hallo Zerwas,
> Auf [mm]\IR[/mm] werde eine Metrik [mm]\delta[/mm] definiert durch
> [mm]\delta(x,y)[/mm] = arctan|x-y|.
> Man zeige, dass [mm]\delta[/mm] die Axiome einer Metrik erfüllt
> und, dass die offenen Mengen bzgl. dieser Metrik dieselben
> sind wie bzgl. der üblichen Metrik d(x,y) = |x-y|.
> Zum ersten Teil habe ich mir überlegt:
> [mm]\delta(x,y)=0 \gdw[/mm] x=y ist klar, da der arctan nur die
> Nullstelle im Ursprung also bei 0 = |x-x| hat.
ja, aber Du hast es schlecht notiert. Du hast ja zu zeigen:
[mm] $\delta(x,y)=0 \gdw [/mm] x=y$.
Hierbei ist die Richtung [mm] $\Leftarrow$ [/mm] trivial (man beachte nur [mm] $\arctan(0)=0$). [/mm]
Andererseits gilt:
[mm] $\delta(x,y)=0 \Rightarrow \arctan(|x-y|)=0 \Rightarrow [/mm] |x-y|=0 [mm] \Rightarrow [/mm] x=y$
(Du kannst auch einfach direkt die Äquivalenz zeigen, indem Du oben in der Rechnung jeden Pfeil [mm] $\Rightarrow$ [/mm] durch [mm] $\gdw$ [/mm] ersetzt.)
Was man hier vielleicht noch kurz anmerken sollte:
Es gilt [mm] $\arctan(r) \ge [/mm] 0$ für alle $r [mm] \ge [/mm] 0$, also [mm] $\delta(x,y) \ge [/mm] 0$ ist damit klar (da $|x-y| [mm] \ge [/mm] 0$ stets).
> Dann, dass [mm]\delta(x,y)[/mm] = [mm]\delta(y,x)[/mm] ergibt sich daraus,
> dass der arctan stetig ist und |x-y|=|y-x|
Was hat das mit der Stetigkeit zu tun? Brauchst Du die wirklich? Zu zeigen ist:
[mm] $\delta(x,y)=\delta(y,x)$, [/mm] also [mm] $\arctan(|x-y|)=\arctan(|y-x|)$. [/mm] Das ergibt sich einfach daraus, dass $|x-y|=|y-x|$ gilt und der [mm] $\arctan(.)$ [/mm] eine FUNKTION ist.
> Die Dreiecksungleichung folgt aus der Monotonie von arctan
> und aus der Dreiecksungleichung für den Betrag. Also:
> arctan|x-z| [mm]\le[/mm] arctan|x-y| + arctan|y-z|, da |x-z| [mm]\le[/mm]
> |x-y| + |y-z| und da arctan x [mm]\le[/mm] arctan y für x [mm]\le[/mm] y.
Ja, das ist korrekt.
> Die offenen Mengen kann man auch einfach übertragen, da der
> arctan ja an den Relationen zwischen den Mengen nichts
> ändern außer sie zu "strecken" oder zu "stauchen". oder?
> Ich würde hier einfach die Beispiele für offene Mengen
> durchgehen die in [mm]\IR[/mm] existieren.
> (a,b), [mm](a,\infty), (-\infty,b), \emptyset, \IR[/mm] und die
> daraus resultierenden Vereinigungen.
> Aber eigentlich reicht doch die Begründung, dass der
> arctan monoton wächst und stetig ist oder?
Also hier habe ich ein wenig das Gefühl, dass Du einfach nur herumrätst und versuchst, mit irgendwas, was Du mal gehört hast, zu argumentieren. Aber die besten Argumente bringen Dir nichts, wenn Du sie einfach nur "aufzählst", sie aber nicht verstehst. Man wird sicherlich (an einer Stelle) mit der Stetigkeit des [mm] $\arctan(.)$ [/mm] argumentieren können (aber nicht müssen). Aber mach' Dir erstmal klar, was denn hier behauptet wird. Es sind zwei Behauptungen zu zeigen:
1.) Wenn $O [mm] \subseteq \IR$ [/mm] bzgl. $d(x,y)=|x-y|$ offen ist, dann ist auch $O$ bzgl. [mm] $\delta(x,y)=\arctan(|x-y|)$ [/mm] offen.
(Was heißt das konkret? Wenn Du irgendein $o [mm] \in [/mm] O$ festhältst, dann gibt es nach Voraussetzung zu diesem $o$ ein [mm] $\varepsilon [/mm] > 0$, so dass für alle $y [mm] \in \IR$ [/mm] mit [mm] $|o-y|<\varepsilon$ [/mm] gilt, dass $y [mm] \in [/mm] O$. Zu zeigen ist dann die Existenz eines [mm] $\varepsilon' [/mm] > 0$ derart, dass für alle $z [mm] \in \IR$ [/mm] mit [mm] $\arctan(|z-o|)<\varepsilon'$ [/mm] dann auch gilt, dass $z [mm] \in [/mm] O$.)
2.) Wenn $O' [mm] \subseteq \IR$ [/mm] bzgl. [mm] $\delta(x,y)=\arctan(|x-y|)$ [/mm] offen ist, dann ist $O'$ auch bzgl. $d(x,y)=|x-y|$ offen.
(Überlege Dir, was das konkret heißt, analog zu oben.)
P.S.:
Als Tipp für 1.) und 2.):
Benutze die Ungleichung:
[mm] $\frac{1}{2} [/mm] r [mm] \le \arctan(r) \le [/mm] r$, welche für alle alle hinreichend kleinen $r [mm] \ge [/mm] 0$ gilt (z.B. für alle $0 [mm] \le [/mm] r [mm] \le [/mm] 1$).
Gruß,
Marcel
|
|
|
|