www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengenlogik
Mengenlogik < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 03.11.2008
Autor: L1NK

Aufgabe
Sind die Aussagen wahr oder falsch. Wenn ja, dann begründe deine Aussage.
Potenzmenge kürze ich mi P ab.
1. Die Menge P(leere Menge) hat genau ein Element.
2. Die Menge P({leere Menge}) hat genau ein Element.
3. Es gilt: P(P(leere Menge)) ist Teilmenge von P({leere Menge})
4. Es gilt: P({leere Menge}) ist Teilmenge von P(P(leere Menge)).

Hi, hab mal vorweg ne Frage.
Kann eine Potenzmenge zweimal die leere Menge enthalen, oder wird das als ein Element gezählt...?? (in Bezug auf 2.)
Also zu eins würde ich ja sagen.
Zu zwei würde auch ja sagen...
Zu drei und vier hab ich keine Ahnung.
Ich hoffe ihr könnt mir weiterhelfen.
Gruss LINK

P.S.: Die Klammern sind zu beachten, ob runde oder Schleifenklammer. Nicht denken ich habe mich vertan...^^

        
Bezug
Mengenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 03.11.2008
Autor: Maik314

Hallo!

Als Leere Menge nehm ich mal das gebräuchliche Symbol [mm] \emptyset [/mm] .
Diese enthält keine Elemente, die Menge { [mm] \emptyset [/mm] } jedoch eines, nämlich die leere Menge.
Aus der Teilmengendefinition A [mm] \subseteq [/mm] B : [mm] \gdw \forall [/mm] x:(x [mm] \in [/mm] A [mm] \to [/mm] x [mm] \in [/mm] B)
für beliebige Mengen A und B (A ist genau dann TM von B, wenn jedes Element in A auch Element in B ist) folgt unmittelbar [mm] \emptyset \subseteq \emptyset [/mm] , sowie allgemein für beliebige Mengen M: M [mm] \subseteq [/mm] M und [mm] \emptyset \subseteq [/mm] M, einfach aufgrund der Logik des Konditionals [mm] \to. [/mm]

Da nun die Potenzmenge P(M) einer Menge M als Menge aller Teilmengen dieser Menge definiert wird und die leere Menge Teilmenge ihrerselbst ist, aber keine weiteren Teilmengen haben kann, muss P( [mm] \emptyset [/mm] )= { [mm] \emptyset [/mm] } sein.

Teilmengen von { [mm] \emptyset [/mm] } sind laut obiger Feststellung { [mm] \emptyset [/mm] } und [mm] \emptyset, [/mm] also ist
P({ [mm] \emptyset [/mm] })={{ [mm] \emptyset [/mm] }; [mm] \emptyset [/mm] }=P(P( [mm] \emptyset [/mm] )).



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]