www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Mengeninklusion
Mengeninklusion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengeninklusion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 So 09.05.2010
Autor: raubkaetzchen

Aufgabe
Für N [mm] \in \IN [/mm] betrachte die Menge [mm] \Omega= \{w=(x_1,...,x_N)| x_i \in \{-1,1\}\} [/mm] mit der Gleichverteilung P. Wir definieren die Zufallsvariablen:
[mm] X_i(w)=x_i [/mm] und [mm] S_i(w)=s_i=x_1+...+x_i, [/mm] für i=1,...,N und [mm] w=(x_1,...,x_N) [/mm]
Eine Menge [mm] A\subset \Omega [/mm] heißt beobachtbar bis zum Zeitpunkt n [mm] \in [/mm] {0,...,N}, wenn sie sich als vereinigung von Mengen der Form [mm] \{X_1=x_1,...,X_n=x_n\}=\{S_1=s_1,...,S_n=s_n\} [/mm] darstellen lässt.
Sei [mm] A_n [/mm] die Klasse dieser Mengen.

Zeige: [mm] \{\emptyset , \Omega\}=:A_0 \subset A_1 \subset... \subset A_N=P(\Omega) [/mm]

Hallo,

Ich glaube, dass gemeint ist [mm] A_n:=\{X_1=x_1,...,X_n=x_n\}. [/mm]
(was ist mit "Klasse dieser Mengen" genau gemeint??)

damit ist doch nun [mm] A_1:=\{X_1=x_1\}, [/mm] oder??
somit hat [mm] A_1 [/mm] doch nur 1 element, nämlich [mm] \Omega [/mm] oder??

wie kann dann [mm] \emptyset \in A_1 [/mm] sein???
Irgendwas stimmt hier nicht, ich weis nur nicht genau was. Vielleicht kann mir jemand weiterhelfen.

Liebe Grüße


        
Bezug
Mengeninklusion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 So 09.05.2010
Autor: Gonozal_IX

Hiho,

da fehlt der Zusatz "und die leere Menge", oder man definiert [mm] $\bigcup_{k=1}^{0}A_k [/mm] = [mm] \emptyset$. [/mm]

Wurde aber (zumindest in meiner Übung) auch zusätzlich erwähnt.

Anschaulich bestehen die [mm] A_n [/mm] also aus den "Grundmengen" [mm] $\{X_1=x_1,...,X_n=x_n\}$, [/mm] d.h. den Mengen, wo die ersten n Elemente klar sind sowie und deren Vereinigungen.

Am Beispiel [mm] A_1: [/mm]

[mm] A_1 [/mm] enthält also [mm] $\{X_1 = x_1\}$, [/mm] wobei [mm] $x_1\in\{0,1\}$ [/mm] d.h.
[mm] A_1 [/mm] enthält schonmal die Mengen [mm] $\{X_1 = 0\}$ [/mm] und [mm] $\{X_1 = 1\}$, [/mm] hinzu kommt [mm] \emptyset [/mm] und die Vereinigungen, d.h. in dem obigen Fall
[mm] $\{X_1 = 0\}\cup $\{X_1 = 1\} [/mm] = [mm] \Omega$ [/mm] und wir erhalten:

[mm] A_1 [/mm] = [mm] \{\emptyset, \{X_1 = 0\}, \{X_1 = 1\}, \Omega\}$. [/mm]

MFG,
Gono.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]