www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengenbeweise
Mengenbeweise < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 02.02.2007
Autor: Zeta

Aufgabe
1.
Seien a, b, c Mengen. Dann gilt:

(i) $a - b = a - (a [mm] \cap [/mm] b)$
(ii) $a - b = a~gdw~a [mm] \cap [/mm] b = [mm] \emptyset [/mm] $
(iii) $a - b = [mm] \emptyset~gdw~a \subseteq [/mm] b$
(iv) $a - (b-c) = (a - b) [mm] \cup [/mm] (a [mm] \cap [/mm] c)$
(v) $ (a-b)-c = a-(b [mm] \cup [/mm] c) $

2.
Seien a, b, c Mengen. Dann gilt (Assoziativgesetz):

(i) $(a [mm] \cup [/mm] b) [mm] \cup [/mm] c = a [mm] \cup [/mm] (b [mm] \cup [/mm] c)$
(ii) $(a [mm] \cap [/mm] b) [mm] \cap [/mm] c = a [mm] \cap [/mm] (b [mm] \cap [/mm] c)$

3.
Für alle Mengen a, b, c gilt (Distributivgesetz):

(i) $(a [mm] \cup [/mm] b) [mm] \cap [/mm] c = (a [mm] \cap [/mm] c) [mm] \cup [/mm] (b [mm] \cap [/mm] c)$
(ii) $(a [mm] \cap [/mm] b) [mm] \cup [/mm] c = (a [mm] \cup [/mm] c) [mm] \cap [/mm] (b [mm] \cup [/mm] c)$

gdw = "genau dann wenn"

Hallo,

ich beschäftige mich im Moment mit der Mengenlehre anhand des Buches von Oliver Deiser, allerdings fehlen mir bei diesen Übungen richtige Ansätze. Wie geht man an solche Beweise ran? Ich kenne natürlich die verschiedenen Definitionen, nur wie zeige ich damit diese Aussagen?

Und noch eine kleine Frage zu der Definition des relativen Komplements:
"Seien a, b Mengen und a [mm] \subseteq [/mm] b. Dann heißt b - a das relative Komplement von a in b. Ist b fixiert, so nennen wir b - a kurz das Komplement von a und setzen [mm] $a^c [/mm] = b - a$."

Was heißt in diesem Zusammenhang "fixiert"?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Viele Grüße,
Zeta

        
Bezug
Mengenbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 02.02.2007
Autor: angela.h.b.


> 1.
>  Seien a, b, c Mengen. Dann gilt:
>  
> (i) [mm]a - b = a - (a \cap b)[/mm]
>  (ii) [mm]a - b = a~gdw~a \cap b = \emptyset[/mm]
>  
> (iii) [mm]a - b = \emptyset~gdw~a \subseteq b[/mm]
>  (iv) [mm]a - (b-c) = (a - b) \cup (a \cap c)[/mm]
>  
> (v) [mm](a-b)-c = a-(b \cup c)[/mm]
>  
> 2.
> Seien a, b, c Mengen. Dann gilt (Assoziativgesetz):
>  
> (i) [mm](a \cup b) \cup c = a \cup (b \cup c)[/mm]
>  (ii) [mm](a \cap b) \cap c = a \cap (b \cap c)[/mm]
>  
> 3.
>  Für alle Mengen a, b, c gilt (Distributivgesetz):
>  
> (i) [mm](a \cup b) \cap c = (a \cap c) \cup (b \cap c)[/mm]
>  (ii) [mm](a \cap b) \cup c = (a \cup c) \cap (b \cup c)[/mm]
>  
> gdw = "genau dann wenn"
>  Hallo,
>  
> ich beschäftige mich im Moment mit der Mengenlehre anhand
> des Buches von Oliver Deiser, allerdings fehlen mir bei
> diesen Übungen richtige Ansätze. Wie geht man an solche
> Beweise ran?

Hallo,

ich will Dir das an einem Deiner Beispiele kurz andeuten, verwende ansonsten die Suchfunktion, da solltest Du haufenweise Beispiele finden.
Zu Beginn des WS ist dieses Thema stets akut.

Wenn Du an einer konkreten Stelle hängenbleibst, kannst Du aber gern wieder nachfragen!

> (i) [mm](a \cup b) \cup c = a \cup (b \cup c)[/mm]

Man zeigt das elementweise, indem man zeigt, daß jedes Element aus der linken Menge in der rechten liegt, und anschließend die umgekehrte Richtung.
Der Start:
Sei [mm] x\in [/mm] (a [mm] \cup [/mm] b) [mm] \cup [/mm] c
==> x [mm] \in [/mm] (a [mm] \cup [/mm] b) oder x [mm] \in [/mm] c
==> (x [mm] \in [/mm] a oder x [mm] \in [/mm] b) oder x [mm] \in [/mm] c
==> ...


> Und noch eine kleine Frage zu der Definition des relativen
> Komplements:
> "Seien a, b Mengen und a [mm]\subseteq[/mm] b. Dann heißt b - a das
> relative Komplement von a in b. Ist b fixiert, so nennen
> wir b - a kurz das Komplement von a und setzen [mm]a^c = b - a[/mm]."
>  
> Was heißt in diesem Zusammenhang "fixiert"?

Man hat oft die Situation, daß man eine Obermenge M hat, und dann Aussagen beweist über Teilmengen dieser Obermenge M.
Für A [mm] \subseteq [/mm] M bedeutet [mm] A^c [/mm] dann M \ A, also das Komplement bezogen auf diese feste Obermenge.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]