www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Menge von Punkten
Menge von Punkten < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge von Punkten: Determinante nimmt 0 an
Status: (Frage) beantwortet Status 
Datum: 15:38 So 01.07.2012
Autor: MatheLoser12

Aufgabe
(i)
1zx
01y
001

Welche Menge von Punkten (x,y,z) wird durch die Bedinung, dass die Determinante der unter (i) gegebenen Matrix den Wert annimmt, beschrieben?

det(i) = 1

Kann die Frage nicht beantworten. Kann mir jemand helfen?

        
Bezug
Menge von Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 01.07.2012
Autor: Schadowmaster

moin,

> (i)
>  1zx
>  01y
>  001
>  
> Welche Menge von Punkten (x,y,z) wird durch die Bedinung,
> dass die Determinante der unter (i) gegebenen Matrix den
> Wert annimmt, beschrieben?
>  det(i) = 1
>  
> Kann die Frage nicht beantworten. Kann mir jemand helfen?

Also du hast:
$A = [mm] \pmat{1 & z & x \\ 0 & 1 & y \\ 0 & 0 & 1}$ [/mm] und du möchtest alle $(x,y,z)$ haben, sodass $det(A) = 1$ gilt?
Oder meinst du etwas anderes?
Kannst du $det(A)$ berechnen (erstmal in Abhängigkeit von $x,y,z$)?

lg

Schadow

Bezug
                
Bezug
Menge von Punkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 So 01.07.2012
Autor: MatheLoser12

in Aufgabenteil a war die Berechnung der Determinante aufgegeben.
Ich habe ermittelt das sie gleich 1 ist. Ist das nicht korrekt?

Aufgabe c war dann die hier aufgeführte.

Bezug
                        
Bezug
Menge von Punkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 So 01.07.2012
Autor: Schadowmaster

Doch, doch, es stimmt schon, die Determinante der Matrix ist 1.
Aber was genau sollst du jetzt mit $x,y,z$ machen?

Bezug
                        
Bezug
Menge von Punkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 So 01.07.2012
Autor: abakus


> in Aufgabenteil a war die Berechnung der Determinante
> aufgegeben.
>  Ich habe ermittelt das sie gleich 1 ist. Ist das nicht
> korrekt?
>  
> Aufgabe c war dann die hier aufgeführte.

Hallo,
die Determinante ist also 1 - ganz gleich - welche Zahlen du konkret für x, y und z einsetzten würdest. Das Tripel (x,y,z) kann also an jeder Stelle alle beliebigen reellen Zahlen als Werte annehmen.
Somit beschreibt dieses Tripel einfach alle Punkte des [mm]\IR^3[/mm].
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]