www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Menge mit strich drüber
Menge mit strich drüber < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge mit strich drüber: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 01.12.2014
Autor: Kayytrop

Seien M eine Menge und A [mm] \subseteq [/mm] P(M) mit A [mm] \neq \emptyset. \\ [/mm]
Zeigen Sie, das gilt: [mm] \overline{\cap A} [/mm] = [mm] \cup \{\overline{B} | B \in A\}. [/mm]

Das ist die Frage mein frage ist was bedeutet das [mm] \overline{\cap A} [/mm] und das [mm] \overline{B} [/mm] . Bitte hilft mir ich und mein kollege wissen nicht weiter.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Menge mit strich drüber: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Mo 01.12.2014
Autor: DieAcht

Hallo,


In der Mengenlehre ist es eine Schreibweise für das Komplement
einer Menge bezüglich der Grundmenge. In der Topologie benutzt
man diese Schreibweise auch für die abgeschlossene Hülle.


Gruß
DieAcht

Bezug
                
Bezug
Menge mit strich drüber: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Mo 01.12.2014
Autor: Marcel

Hallo,

> Hallo,
>  
>
> In der Mengenlehre ist es eine Schreibweise für das
> Komplement
> einer Menge bezüglich der Grundmenge.

das wird hier vermutlich auch gemeint sein - auch, wenn das Folgende
natürlich durchaus erwähnenswert war. :-)

Gruß,
  Marcel

> In der Topologie benutzt
>  man diese Schreibweise auch für die abgeschlossene
> Hülle.

Bezug
        
Bezug
Menge mit strich drüber: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mo 01.12.2014
Autor: Marcel

Hallo,

> Seien M eine Menge und A [mm]\subseteq[/mm] P(M) mit A [mm]\neq \emptyset. \\[/mm]
>  
> Zeigen Sie, das gilt: [mm]\overline{\cap A}[/mm] = [mm]\cup \{\overline{B} | B \in A\}.[/mm]
>  
> Das ist die Frage mein frage ist was bedeutet das
> [mm]\overline{\cap A}[/mm] und das [mm]\overline{B}[/mm] . Bitte hilft mir
> ich und mein kollege wissen nicht weiter.

neben dem gesagten: Man sollte hier auch wissen, dass

    [mm] $\bigcap A=\bigcap_{X \in A}X$ [/mm]

per Definitionem gilt.

Und da Beispiele manchmal mehr sagen als 1000 Beweise ( eigentlich vertrete
ich eher die umgekehrte Position ;-) ):
Sei [mm] $M=\{1,2,3\}$ [/mm] und [mm] $A=\{\{1\},\{1,3\}\}\,.$ [/mm] Dann gilt

    [mm] $\bigcap A=\bigcap_{X \in A}X=\{1\} \cap \{1,3\}=\{1\}$ [/mm]

und damit

    [mm] $\overline{\bigcap A}=M \setminus \{1\}=\{2,3\}\,.$ [/mm]

Weiterhin

    [mm] $\bigcup\{\overline{B}\mid B \in A\}=(M \setminus \{1\}) \cup [/mm] (M [mm] \setminus \{1,3\})=\{2,3\} \cup \{2\}=\{2,3\}\,.$ [/mm]

Das ist natürlich nur ein Beispiel, welches illustriert, dass die Formel jedenfalls
bei diesem Beispiel passt. Der allgemeine Beweis ist nun Eure Aufgabe!

Gruß,
  Marcel

Bezug
                
Bezug
Menge mit strich drüber: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Di 02.12.2014
Autor: Kayytrop

Vielen Dank, das bringt uns schon weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]