www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Menge mit Mengen als Elemente
Menge mit Mengen als Elemente < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge mit Mengen als Elemente: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:56 So 11.01.2015
Autor: Ne0the0ne

Aufgabe
a) Wie viele Elemente hat die Menge [mm] A=\{\emptyset, \{\emptyset , \{\emptyset \}\}, \{\emptyset \}, \{\{\emptyset \}\}\}? [/mm]

b) Wie viele Elemente hat die Menge [mm] B=\{\{\emptyset, \{\emptyset \}\}, \{\{ \emptyset, \emptyset\}, \emptyset\}\}? [/mm]

c) Geben Sie [mm] \mathcal{P} (\{\emptyset, \{\emptyset\}\}) [/mm] an.

Meine Lösungen:
a) |A| = 4
b) |B| = 2

Für a) und b) würde ich gerne wissen, ob es gut ist, sich an den geschweiften Klammern zu orientieren, da sie ja die Mengen (als Elemente) bestimmen; dabei habe ich mir gedacht, dass eine abgeschlossene Menge als Element = 1 gilt.

c) Gesucht ist ja die Potenzmenge der Menge. Ich benenne die Menge C (für die Einfachheit).
Die Potenzmenge C ist die Menge aller Teilmengen der Menge C.
Dazu gehört die leere Menge, sowie die Menge C selbst.
Die Mächtigkeit von [mm] \mathcal{P} [/mm] ist [mm] 2^{n} [/mm] Elemente, also [mm] 2^{1} [/mm] (da |C|=1).

Dann dürfte doch [mm] \mathcal{P}=\{\emptyset, \{\emptyset, \{\emptyset\}\}\} [/mm] sein (oder?).

        
Bezug
Menge mit Mengen als Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 11.01.2015
Autor: fred97


> a) Wie viele Elemente hat die Menge [mm]A=\{\emptyset, \{\emptyset , \{\emptyset \}\}, \{\emptyset \}, \{\{\emptyset \}\}\}?[/mm]
>  
> b) Wie viele Elemente hat die Menge [mm]B=\{\{\emptyset, \{\emptyset \}\}, \{\{ \emptyset, \emptyset\}, \emptyset\}\}?[/mm]
>  
> c) Geben Sie [mm]\mathcal{P} (\{\emptyset, \{\emptyset\}\})[/mm]
> an.
>  Meine Lösungen:
>  a) |A| = 4
>  b) |B| = 2


Das stimmt.


>  
> Für a) und b) würde ich gerne wissen, ob es gut ist, sich
> an den geschweiften Klammern zu orientieren, da sie ja die
> Mengen (als Elemente) bestimmen; dabei habe ich mir
> gedacht, dass eine abgeschlossene Menge als Element = 1
> gilt.
>  
> c) Gesucht ist ja die Potenzmenge der Menge. Ich benenne
> die Menge C (für die Einfachheit).
> Die Potenzmenge C ist die Menge aller Teilmengen der Menge
> C.
> Dazu gehört die leere Menge, sowie die Menge C selbst.
>  Die Mächtigkeit von [mm]\mathcal{P}[/mm] ist [mm]2^{n}[/mm] Elemente, also
> [mm]2^{1}[/mm] (da |C|=1).
>  
> Dann dürfte doch [mm]\mathcal{P}=\{\emptyset, \{\emptyset, \{\emptyset\}\}\}[/mm]
> sein (oder?).

Das stimmt nicht.

  $C:= [mm] \{\emptyset, \{\emptyset\}\}$ [/mm] hat 2 Elemente.

Damit hat die Potenzmenge von C

   [mm] 2^2=4 [/mm]

Elemente.

FRED




Bezug
                
Bezug
Menge mit Mengen als Elemente: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:22 So 11.01.2015
Autor: Ne0the0ne

Danke für den wichtigen Hinweis.

Habe nochmal meine Potenzmenge überarbeitet und kam jetzt auf folgendes:
[mm] P(M)=\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset,\{\emptyset\}\}\} [/mm]

Bezug
                        
Bezug
Menge mit Mengen als Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 So 11.01.2015
Autor: angela.h.b.


> Habe nochmal meine Potenzmenge überarbeitet und kam jetzt
> auf folgendes:
>  [mm]P(M)=\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset,\{\emptyset\}\}\}[/mm]
>  

Stimmt!

LG Angela


Bezug
                                
Bezug
Menge mit Mengen als Elemente: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 So 11.01.2015
Autor: Ne0the0ne

Danke sehr für die Kontrolle. :-)

Bis zur nächsten Frage. ;)

Bezug
        
Bezug
Menge mit Mengen als Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 So 11.01.2015
Autor: tobit09

Hallo zusammen!


> b) Wie viele Elemente hat die Menge [mm]B=\{\{\emptyset, \{\emptyset \}\}, \{\{ \emptyset, \emptyset\}, \emptyset\}\}?[/mm]


>  Meine Lösungen:

>  b) |B| = 2

Nein, es gilt $|B|=1$, da es sich bei den "beiden" Elementen von $B$ lediglich um verschiedene Darstellungen des gleichen Elementes handelt.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]