Menge ein Untervektorraum? < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:37 Fr 30.11.2007 | Autor: | bamm |
Aufgabe | Ist die Menge U ein Untervektorraum? Begründen Sie ihre Antwort.
[mm]U := \{(x, y, z)^T\in\IR^3 | xy \ge z^2 -1\} \subseteq \IR^3[/mm] |
Hallo,
bei der obigen Aufgabe komm ich nicht so recht weiter, die Ungleichung bereitet mir irgendwie Probleme. Ich wollte zur Lösung der Aufgabe ganz normal vorgehen, d.h. die Kriterien des UVR beweisen: Also [mm]0\in U[/mm]? Das scheint zu stimmen, da ja [mm]0 \ge -1[/mm] offensichtlich stimmt.
Nun wollte ich beweisen, dass auch [mm]\vec v + \vec w[/mm] in U liegt (Additivität). Dazu hab ich folgende Rechnung aufgestellt:
[mm]\vec v = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}
\vec w = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}
Bedingung 1: x_1*y_1 \ge z_1^2 -1 \\
Bedingung\ 2: x_2*y_2 \ge z_2^2 -1[/mm]
[mm]Behauptung: (x_1 + x_2)*(y_1 + y_2) \ge (z_1 + z_2)^2 -1
x_1*y_1 + x_1*y_2 + x_2*y_1 + x_2*y_2 \ge (z_1 + z_2)^2 -1[/mm]
So, [mm]x_1*y_1[/mm] wäre ja ja lt. Bed. 1 [mm]\ge z_1^2 -1[/mm]. Selbiges gilt dann für [mm]x_2*y_2[/mm]. Aber das mach ich jetzt? Es sind ja jetzt links noch zwei Faktoren "übrig", recht könnt ich evtl. noch mit ner binomischen Formel das ^2 auflösen, aber was dann. Bin ich überhaupt auf dem richtigen Weg *grübel*? Ich hab mir zwar auch mal kurz überlegt ob man nicht auch mit einem Gegenbeispiel weiterkommt, bin aber jetzt auf kein Gegenbeispiel gekommen.
Korrektur!: Hab mir jetzt was überlegt in Richtung Widerspruch (Gegenbeispiel), stimmt das dann so? [mm]\vec v = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}[/mm] würde in U liegen, aber [mm]2 * \vec v[/mm] nicht mehr. Damit hätte ich ja eig. einen gültigen Widerspruchsbeweis und müsste die Ungleichung oben nicht mehr auflösen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:45 Fr 30.11.2007 | Autor: | leduart |
Hallo
Du hast recht ein Gegenbeispiel reicht, dass es kein VR ist.
Gruss leduart
|
|
|
|