www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Menge der Winkel sind überabzä
Menge der Winkel sind überabzä < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge der Winkel sind überabzä: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Mo 12.12.2011
Autor: willy89

Aufgabe
Zeigen Sie, dass die Menge der Winkel a [mm] \in [/mm] (0,2 [mm] \pi [/mm] ), so dass [mm] e^{ia} [/mm] transzendent über [mm] \IQ [/mm] ist, überabzählbar ist.

Hallo,
ich komme bei der Aufgabe leider überhaupt nicht weiter.
Ich habe mir überlegt, dass man vielleicht über die Erweiterung gehen könnte, wenn die Menge der Winkel abzählbar werde.
Aber das klappt nicht so wirklich...

Grüße
willy

        
Bezug
Menge der Winkel sind überabzä: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mo 12.12.2011
Autor: Harris

Hi!

Formuliere das Problem um:

Zeigen Sie, dass die Menge der Winkel [mm] $(0,2\pi)$, [/mm] so dass [mm] $e^{ia}$ [/mm] algebraisch ist, abzählbar sind.

Dann verwendest du noch, dass keine zwei Winkel auf die gleiche Zahl abgebildet werden und dass die algebraischen Zahlen abzählbar sind. Dann hast du's! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]