www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Menge abgeschlossen
Menge abgeschlossen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge abgeschlossen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 So 10.03.2013
Autor: theresetom

Aufgabe
Sei (M,d) metrischer Raum, A [mm] \subseteq [/mm] M
Zeige A abgeschlossen => Falls x [mm] \in [/mm] M die Eigenschaft [mm] \forall \epsilon>0: U_\epsilon [/mm] (x) [mm] \cap [/mm] A [mm] \not= \{\} [/mm] besitzt, dann gilt x [mm] \in [/mm] A

A [mm] \subseteq [/mm] M ist abgeschlossen d.h. MohneA offen dh. [mm] \forall [/mm] x [mm] \in [/mm] MohneA [mm] \exists \epsilon: U_\epsilon [/mm] (x) [mm] \subseteq [/mm] MohneA

Ich komme da nicht weiter..
LG

        
Bezug
Menge abgeschlossen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 So 10.03.2013
Autor: steppenhahn

Hallo,


> Sei (M,d) metrischer Raum, A [mm]\subseteq[/mm] M
>  Zeige A abgeschlossen => Falls x [mm]\in[/mm] M die Eigenschaft

> [mm]\forall \epsilon>0: U_\epsilon[/mm] (x) [mm]\cap[/mm] A [mm]\not= \{\}[/mm]
> besitzt, dann gilt x [mm]\in[/mm] A


>  A [mm]\subseteq[/mm] M ist abgeschlossen d.h. MohneA offen dh.
> [mm]\forall[/mm] x [mm]\in[/mm] MohneA [mm]\exists \epsilon: U_\epsilon[/mm] (x)
> [mm]\subseteq[/mm] MohneA

Das ist soweit alles richtig, aber das hat noch keinen roten Faden.

----

Versuch' dir mal ein grundsätzliches Beweisvorgehen anzutrainieren.
Du kannst solche Beweise ganz alleine (und auch für dich selbst überzeugend) schaffen, wenn du stringent nach Plan vorgehst.

Der erste Punkt ist immer: Wie kann ich zeigen, was zu zeigen ist?
Hier sollst du zeigen: $x [mm] \in [/mm] A$.

Es ist schwierig zu zeigen, dass etwas in einer abgeschlossenen Menge liegt, weil meist $A$ abgeschlossen über [mm] $M\backslash [/mm] A$ offen definiert wird.

Deswegen wäre die Idee, den Beweis zu verlagern. Statt $x [mm] \in [/mm] A$ zeigen wir (das wegen [mm] $x\in [/mm] M$ äquivalente) $x [mm] \not\in M\backslash [/mm] A$. Das ist leichter, weil wir wissen wann $x [mm] \in M\backslash [/mm] A$ ist (offene Menge).

Also: Widerspruchsbeweis.
Angenommen, $x [mm] \in M\backslash [/mm] A$. Dann gäbe es [mm] $\varepsilon [/mm] > 0$ sodass [mm] $U_{\varepsilon}(x) \subset [/mm] M [mm] \backslash [/mm] A$.

Das würde bedeuten: [mm] $U_{\varepsilon}(x) \cap [/mm] A = ...$.

Kann das sein?

Viele Grüße,
Stefan

Bezug
                
Bezug
Menge abgeschlossen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 10.03.2013
Autor: theresetom

Danke.. Hab den Beweis nun hinbekommen.

Ich hab noch eine ähnliche Aufgabe:
Zeige: Falls x [mm] \in [/mm] M die Eigenschaft [mm] \forall \epsilon>0: U_\epsilo [/mm] (x) [mm] \cup [/mm] A [mm] \not= \{\} [/mm] besitzt, dann gilt x [mm] \in [/mm] A => Ist x [mm] \in [/mm] M und [mm] (x_n) [/mm] eine Folge in A mit [mm] x_n [/mm] -> x dann gilt x [mm] \in [/mm] A.

Bew.:
Sei [mm] x_n [/mm] eine Folge in A mit [mm] x_n->x [/mm] d.h. [mm] \forall \epsilon>0 \exists [/mm] N [mm] \in \IN \forall [/mm] n [mm] \ge [/mm] N : [mm] x_n \in U_\epsilon [/mm] (x)
ZuZeigen x erfüllt die Eigenschaft von der ersten Bedingung.
Ang [mm] \exists \epsilon>0 [/mm] : [mm] U_\epsilon [/mm] (x) [mm] \cap [/mm] A = [mm] \{\} [/mm] dass würde [mm] x_n [/mm] -> x widersprechen. Da [mm] x_n \in [/mm] A und für alle [mm] \epsilon: x_n \in U_\epsilon [/mm] (x)
ok?

Bezug
                        
Bezug
Menge abgeschlossen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 So 10.03.2013
Autor: theresetom

ich hab morgen Abgabe. Vlt findet sich noch wer der kurz drüber schauen kann?=

Liebe Grüße

Bezug
                        
Bezug
Menge abgeschlossen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 So 10.03.2013
Autor: steppenhahn

Hallo,


> Danke.. Hab den Beweis nun hinbekommen.
>  
> Ich hab noch eine ähnliche Aufgabe:
>  Zeige: Ist x [mm]\in[/mm] M und [mm](x_n)[/mm] eine Folge in A mit [mm]x_n[/mm] -> x dann gilt x [mm]\in[/mm] A.

>  
> Bew.:
>  Sei [mm]x_n[/mm] eine Folge in A mit [mm]x_n->x[/mm] d.h. [mm]\forall \epsilon>0 \exists[/mm]
> N [mm]\in \IN \forall[/mm] n [mm]\ge[/mm] N : [mm]x_n \in U_\epsilon[/mm] (x)
>  ZuZeigen: x erfüllt die Eigenschaft von der ersten
> Bedingung.

Ja, denn dann folgt [mm] $x\in [/mm] A$.

>  Ang [mm]\exists \epsilon>0[/mm] : [mm]U_\epsilon[/mm] (x) [mm]\cap[/mm] A = [mm]\{\}[/mm] dass
> würde [mm]x_n[/mm] -> x widersprechen. Da [mm]x_n \in[/mm] A und für alle
> [mm]\epsilon: x_n \in U_\epsilon[/mm] (x)
>  ok?

Ja, ist OK. Du kannst auch einen direkten Beweis machen:

Sei [mm] $\varepsilon [/mm] > 0$ beliebig. Wegen [mm] $x_n \to [/mm] x$ ex. $N [mm] \in \IN: \forall [/mm] n [mm] \ge [/mm] N: [mm] x_n \in U_{\varepsilon}(x)$. [/mm] Da [mm] $(x_n)$ [/mm] Folge in A, gilt [mm] $x_n \in [/mm] A$ und somit

[mm] $x_n \in [/mm] A [mm] \cap U_{\varepsilon}(x)$, [/mm]

also

$A [mm] \cap U_{\varepsilon}(x) \not= \emptyset.$ [/mm]


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]