www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrfachintegration
Mehrfachintegration < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegration: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:23 So 22.01.2012
Autor: Olga1234

Aufgabe
Sei Q={(x,y) [mm] \in \IR^{2}: [/mm] |x|+|y| [mm] \le [/mm] 1}.
Berechnen Sie: [mm] \integral_{}^{}{\integral_{Q}^{}{\bruch{cos(0,5*\pi*(x-y))}{1+(x+y)^2} dx} dy} [/mm] durch Mehrfachintegration. Verwenden Sie hierzu die Koordinatentransformation u=x-y und v=x+y.


Ich weiß damit leider gar nichts richtig anzufangen.

Im Skript steht, dass man
[mm] \integral_{a}^{b}{\integral_{\alpha(x)}^{\beta(x)}{f(x,y) dy} dx} [/mm] berechnen muss.

Sind u und v dieses [mm] \alpha(x) [/mm] und [mm] \beta(x)? [/mm]

        
Bezug
Mehrfachintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 22.01.2012
Autor: Al-Chwarizmi


> Sei   $\ Q\ =\ [mm] \{(x,y)\,\in \IR^{2}:\ |x|+|y|\le 1\,\}$ [/mm] .
>  Berechnen Sie:
> [mm]\integral_{}^{}{\integral_{Q}^{}{\bruch{cos(0,5*\pi*(x-y))}{1+(x+y)^2} dx} dy}[/mm]
> durch Mehrfachintegration. Verwenden Sie hierzu die
> Koordinatentransformation u=x-y und v=x+y.
>  
> Ich weiß damit leider gar nichts richtig anzufangen.
>  
> Im Skript steht, dass man
> [mm]\integral_{a}^{b}{\integral_{\alpha(x)}^{\beta(x)}{f(x,y) dy} dx}[/mm]
> berechnen muss.
>  
> Sind u und v dieses [mm]\alpha(x)[/mm] und [mm]\beta(x)?[/mm]


Hallo Olga,

wie die Bezeichnungen in deinem Skript genau zu
verstehen sind und ob sie in deinem Beispiel wirklich
passen, ist mir nicht klar.

Ich schlage dir vor, dir zuerst in einer Zeichnung des
Integrationsgebietes Q klar zu machen, weshalb die
Substitution mit  u:=x-y und v:=x+y jedenfalls hilfreich
ist. Zwischen welchen Grenzen müssen sich u und v
bewegen, damit genau das Gebiet Q abgedeckt wird ?
Ein zweiter Schritt ist dann, sich die Transformation
des Flächenelements [mm] dx\,dy [/mm] in jenes in u-v-Koordinaten
zu überlegen.

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]