www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrfachintegration
Mehrfachintegration < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 03:40 Do 22.01.2009
Autor: xcase

Aufgabe
1) Berechnen Sie das Integral [mm] \integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy [/mm] . G ist das Dreieck mit den Rändern x = [mm] \bruch{\pi}{2} [/mm] , y = [mm] \bruch{\pi}{2} [/mm] und x + y = 0.

2) Gegeben sei ein zweidimensionales Bierglas der Höhe 4cm. Die Form des Glases ist durch die Parabel y = x2 gegeben. Dieses Glas wird nun um 45◦ Grad gekippt. Wie viel zweidimensionales Bier passt jetzt noch in das Glas ohne das es überfliesst.

zu 1)
ich brauche ja die Grenzen von x und von y. Ich hab mir das Dreieck mal mit den Rändern aufgemalt und nur x+y = 0 ist ja variabel. Undzwar der Punkt variiert auf der Geraden y=-x . Was sind denn jetzt aber meine oberen und unteren Grenzen von x und y?
Sieht das vielleicht so aus:

[mm] \integral_{-\infty}^{\infty}{}\integral_{\infty}^{-\infty}{}sin(x-y)dxdy [/mm] ?
Falls ja weiss ich leider hier nicht mehr weiter^^

zu 2)
Das Bierglas hat ja die Breite 4 und die Höhe 4. Nur wenn ich die Parabel jetzt um 45° Kippe...fällt mir nicht ein mit welchen werten ich weiter rechnen soll. Ich meine aufgemalt hab ichs mir und ich weiss auch welchen Bereich ich Integrieren muss...nur wie krieg ich da die exakten Werte und vor allem wenn ich die Werte habe (Integrationsgrenzen) mit welcher Funktion soll ich dann integrieren, weil [mm] y=x^{2} [/mm] ist es ja dann auch nicht mehr oder? Natürlich schon irgendwie nur um 45° geneigt.. .

Würde mich über einen Ansatz freuen.

MfG Tomi

        
Bezug
Mehrfachintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 07:15 Do 22.01.2009
Autor: fred97


> 1) Berechnen Sie das Integral
> [mm]\integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy[/mm] . G ist das
> Dreieck mit den Rändern x = [mm]\bruch{\pi}{2}[/mm] , y =
> [mm]\bruch{\pi}{2}[/mm] und x + y = 0.
>  
> 2) Gegeben sei ein zweidimensionales Bierglas der Höhe 4cm.
> Die Form des Glases ist durch die Parabel y = x2 gegeben.
> Dieses Glas wird nun um 45◦ Grad gekippt. Wie viel
> zweidimensionales Bier passt jetzt noch in das Glas ohne
> das es überfliesst.
>  zu 1)
>  ich brauche ja die Grenzen von x und von y. Ich hab mir
> das Dreieck mal mit den Rändern aufgemalt und nur x+y = 0
> ist ja variabel. Undzwar der Punkt variiert auf der Geraden
> y=-x . Was sind denn jetzt aber meine oberen und unteren
> Grenzen von x und y?
>  Sieht das vielleicht so aus:
>  
> [mm]\integral_{-\infty}^{\infty}{}\integral_{\infty}^{-\infty}{}sin(x-y)dxdy[/mm]
> ?

Nein


>  Falls ja weiss ich leider hier nicht mehr weiter^^


Hallo Tomi,
das Dreieck hast Du schon gemalt. Gut. Es hat die Eckpunkte [mm] (-\pi/2, \pi/2), (\pi/2,\pi/2) [/mm] und [mm] (\pi/2,- \pi/2) [/mm]

Bei festem x [mm] \in [-\pi/2,\pi/2] [/mm] läuft y von -x bis [mm] \pi/2, [/mm] also

$ [mm] \integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy [/mm] $ = $ [mm] \integral_{-\pi/2}^{\pi/2}{}\integral_{-x}^{\pi/2}{}sin(x-y)dydx [/mm] $


FRED

>  
> zu 2)
>  Das Bierglas hat ja die Breite 4 und die Höhe 4. Nur wenn
> ich die Parabel jetzt um 45° Kippe...fällt mir nicht ein
> mit welchen werten ich weiter rechnen soll. Ich meine
> aufgemalt hab ichs mir und ich weiss auch welchen Bereich
> ich Integrieren muss...nur wie krieg ich da die exakten
> Werte und vor allem wenn ich die Werte habe
> (Integrationsgrenzen) mit welcher Funktion soll ich dann
> integrieren, weil [mm]y=x^{2}[/mm] ist es ja dann auch nicht mehr
> oder? Natürlich schon irgendwie nur um 45° geneigt.. .
>  
> Würde mich über einen Ansatz freuen.
>  
> MfG Tomi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]