www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrdimensionales Taylorpolyn.
Mehrdimensionales Taylorpolyn. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 So 13.05.2012
Autor: racy90

Hallo,

Ich hab folgende Funktion gegeben [mm] f(x,y)=y^2+xy+x-y+17 [/mm] und soll nun das Taylorpolynom im Punkt P (1,2) berechnen.Daraus soll ich mir die Gleichung für die Tangentialebene im Punkt P herauslesen und den Normalvektor der Ebene angeben.

Das Taylorpolynom sollte sein [mm] T_2= 22+3(x-1)+4(x-2)+1(2(x-1)(y-2))+2(y-2)^2 [/mm]

Aber wie bekomme ich nun die Tangentialebene bzw dessen Normalvektor??

        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 So 13.05.2012
Autor: Richie1401

Die Tangentialebene berechnest du ganz einfach mit f(x,y). Die Formel sollte dir bekannt sein.

Tangentialebene
[mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm]

Daraus ergibt sich dann ja auch der Normalenvektor.

Bezug
                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 13.05.2012
Autor: racy90

für diesen Audruck [mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm] würde ich auf 1(x-1)+3(y-2) kommen?

Bezug
                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 So 13.05.2012
Autor: Richie1401

Ich fürchte nein.

Bilde die partiellen Ableitungen, setze den Punkt (1,2) ein und berechne auch noch [mm] z_0. [/mm]



Bezug
                                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 So 13.05.2012
Autor: racy90

fx(x,y)=y+1  fy(x,y)=2y+x-1  [mm] df=\bruch{y+1+2y+x-1}{dx}(x-1)+\bruch{y+1+2y+x-1}{dy}(y-2) [/mm] =1(x-1)+3(y-2)


Das müsste doch nach deiner Formel stimmen

Aber es steht auch das man es auch aus der Taylorformel herauslesen kann,dann bräuchte ich ja die zusätzliche berechnung nicht oder?

Bezug
                                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 So 13.05.2012
Autor: Richie1401


> [mm] f_x(x,y)=y+1 [/mm] ;  [mm] f_y(x,y)=2y+x-1 [/mm]  
> [mm]df=\bruch{y+1+2y+x-1}{dx}(x-1)+\bruch{y+1+2y+x-1}{dy}(y-2)[/mm]
> =1(x-1)+3(y-2)

=> [mm] f_x(1,2)=3 [/mm] ; [mm] f_y(1,2)=4 [/mm] ; [mm] z_0=f(1,2)=22 [/mm]

Eingesetzt in
$ [mm] z-z_0=\bruch{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\bruch{\partial f(x_0,y_0)}{\partial y}(y-y_0) [/mm] $ liefert

$ z-22=3(x-1)+4(y-2) $

>  
>
> Das müsste doch nach deiner Formel stimmen
>  
> Aber es steht auch das man es auch aus der Taylorformel
> herauslesen kann,dann bräuchte ich ja die zusätzliche
> berechnung nicht oder?

Kommt dir obiges bekannt vor?

Normalenvektor: du kannst alles ausrechnen, und dann hast du eine ganz normale Ebenengleichung.
Also: $ -22+3+8=3x+4y-z $
Normalenvektor ist demnach was?

Bezug
                                                
Bezug
Mehrdimensionales Taylorpolyn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 So 13.05.2012
Autor: racy90

Normalvektor müsste sein : (3,4,-1) oder?

Bezug
                                                        
Bezug
Mehrdimensionales Taylorpolyn.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 13.05.2012
Autor: Richie1401

Absolut!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]