www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Maximumsprinzip
Maximumsprinzip < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsprinzip: Idee
Status: (Frage) beantwortet Status 
Datum: 21:47 Fr 28.02.2014
Autor: gpw

Aufgabe
Die Funktion f sei auf einem Gebiet G holomorph und nicht-konstant. Zeigen oder widerlegen Sie: In G kann Re(f) kein Minimum und kein Maximum annehmen.

Hallo zusammen,

die folgende Aufgabe beschäftigt mich in meiner Klausur Vorbereitung.

Ich hätte eine Idee, nur bin ich mir nicht wirklich sicher:

Die Funktion sin(z) ist holomorph auf [mm] \IC [/mm] und nicht konstant . Im Realteil besitzt sie Minima und Maxima.
Damit wäre diese Aussage widerlegt oder hab ich einen Denkfehler?

Vielen Dank und Gruß
gpw

        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Sa 01.03.2014
Autor: Leopold_Gast

Dein Irrtum besteht darin, daß der Realteil der Sinusfunktion beschränkt wäre. Das ist mitnichten der Fall. Zerlegt man [mm]z[/mm] in Real- und Imaginärteil: [mm]z = x + \operatorname{i} y[/mm], so gilt:

[mm]\sin(z) = \sin(x) \cdot \cosh(y) + \operatorname{i} \cdot \cos(x) \cdot \sinh(y)[/mm]

Betrachte etwa die Folge der [mm]z_n = \frac{\pi}{2} + \operatorname{i} \cdot n \, , \ n \geq 0[/mm].

Du darfst den Realteil nicht nur für reelle [mm]z[/mm] betrachten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]