Maximum/Minimum bestimmen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Bestimmen Sie die Anzahl der positiven Lösungen der Gleichung [mm] \bruch{1}{x}+3log(x) [/mm] = 0.
b) Zeigen Sie, dass die Funktion f(x) = [mm] e^{3x}log(x) [/mm] auf [mm] (0,+\infty) [/mm] genau ein lokales Maximum [mm] x_{max} [/mm] und genau ein lokales Minimum [mm] x_{min} [/mm] hat. Berechnen Sie das Vorzeichen von [mm] f(x_{min}) [/mm] und [mm] f(x_{max}). [/mm] |
Hallo zusammen,
ich möchte gerne wissen, ob meine Lösungen so richtig sind?
Beweis a)
Definiere f(x) := [mm] \bruch{1}{x} [/mm] + 3log(x) für x [mm] \in \IR^+
[/mm]
Bestimme f'
f'(x) = [mm] -\bruch{1}{x^2}+\bruch{3}{x}
[/mm]
Löse f'(x) = 0
[mm] \gdw -\bruch{1}{x^2}+\bruch{3}{x} [/mm] = 0
[mm] \gdw [/mm] -1+3x = 0
[mm] \gdw [/mm] 3x = 1
[mm] \gdw [/mm] x = [mm] \bruch{1}{3}
[/mm]
Es gelten: f'(x) < 0 für x < [mm] \bruch{1}{3} [/mm] und f'(x) > 0 für x > [mm] \bruch{1}{3}
[/mm]
[mm] \Rightarrow [/mm] x = [mm] \bruch{1}{3} [/mm] ist lokale Minimumstelle.
Berechne [mm] f(\bruch{1}{3}) [/mm] = [mm] \bruch{1}{\bruch{1}{3}}+3log(\bruch{1}{3}) [/mm] = [mm] 3+3log(\bruch{1}{3}) [/mm] = 3-3log(3) = 3(1-log(3)) < 0, da log(3) > 1
Weiterhin gilt: [mm] \limes_{x\downarrow 0}f(x) [/mm] = [mm] \limes_{x\downarrow 0}\bruch{1}{x} [/mm] + 3log(x) = [mm] \limes_{t\rightarrow +\infty}(t+3log(\bruch{1}{t}) [/mm] = [mm] \limes_{t\rightarrow +\infty}(t-3log(t)) [/mm] = [mm] +\infty, [/mm] da log(x) langsamer als [mm] \wurzel[n]{x} [/mm] gegen [mm] +\infty [/mm] für x gegen [mm] +\infty [/mm] geht. Insbesondere also auch als jede Potenz [mm] x^n [/mm] für jedes n [mm] \in \IN.
[/mm]
[mm] \Rightarrow [/mm] Da für x < [mm] \bruch{1}{3} [/mm] streng monoton falled und für x > [mm] \bruch{1}{3} [/mm] streng monoton steigend und [mm] f(\bruch{1}{3}) [/mm] < 0 und [mm] \limes_{x\downarrow 0}f(x) [/mm] = [mm] +\infty [/mm] ist, folgt, dass f 2 positive Nullstellen hat. Insbesondere hat also die Gleichung genau 2 positive Lösungen.
[mm] \Box
[/mm]
Beweis b)
f(x) = [mm] e^{3x}log(x)
[/mm]
Bestimme f'
f'(x) = [mm] 3e^{3x}log(x)+\bruch{e^{3x}}{x} [/mm] = [mm] e^{3x}(3log(x)+\bruch{1}{x})
[/mm]
Es ist: f(1) = 0
Sei x > 1. Dann: f'(x) = [mm] e^{3x}(3log(x)+\bruch{1}{x}) [/mm] > 0
[mm] \Rightarrow [/mm] Wenn es ein lok. Minimum/Maximum gibt, dann muss es im Intervall (0;1) liegen, da f auf [mm] (1,+\infty) [/mm] streng monoton steigend, und f'(1) [mm] \not= [/mm] 0.
Es gelten: [mm] \limes_{x\downarrow 0}f(x) [/mm] = [mm] \limes_{x\downarrow 0}e^{3x}log(x) [/mm] = [mm] -\infty [/mm]
[mm] \limes_{x\rightarrow +\infty}f(x) [/mm] = [mm] \limes_{x\rightarrow +\infty}e^{3x}log(x) [/mm] = [mm] +\infty
[/mm]
Aus Teil a) wissen wir, dass [mm] \bruch{1}{x}+3log(x) [/mm] = 0 genau 2 positive Lösungen besitzt.
Mithin folgt, dass f'(x) = [mm] e^{3x}(3log(x)+\bruch{1}{x}) [/mm] genau 2 Nullstellen hat, da x [mm] \in (0,+\infty).
[/mm]
Also hat f 2 mögliche Extremstellen bzw. Sattelpunkte. Bezeichne mit [mm] x_1, x_2 [/mm] die möglichen Extremstellen/Sattelpunkte von f, wobei [mm] x_1 [/mm] < [mm] x_2.
[/mm]
Es ist möglich die Konstellationen von Extremstellen und Sattelpunkten einzuschränken, unter der Beachtung der bisherigen Kenntnisse:
(i) [mm] \limes_{x\downarrow 0}f(x) [/mm] = [mm] -\infty [/mm]
(ii) [mm] \limes_{x\rightarrow +\infty}f(x) [/mm] = [mm] +\infty
[/mm]
(iii) f(1) = 0
(iv) f streng monoton wachsend auf [mm] (1,+\infty)
[/mm]
Möglich sind also:
- 2 Sattelpunkte mit jeweils rechts-links-Wechsel
- [mm] x_1 [/mm] lok. Maximumstelle, [mm] x_2 [/mm] lokale Minimumstelle
Ausgeschlossen sind:
- 1 Extremstelle & 1 Sattelpunkte
- [mm] x_1 [/mm] lok. Minimumstelle, [mm] x_2 [/mm] lokale Maximumstelle
- 2 Sattelpunkte mit anderen Richtungswechseln,
da mind. eine der Bedingungen (i) bis (iv) verletzt sind.
Bei 2 Sattelpunkten mit jeweils rechts-links-Wechsel, muss auf (0,1) monoton steigend sein.
Es reicht daher zu zeigen, dass f'(x) < 0 für ein x [mm] \in [/mm] (0,1) ist, um daraus zu schließen, dass [mm] x_1 [/mm] lok. Maximumstelle und [mm] x_2 [/mm] lokale Minimumstelle sind.
Es gilt: f'(x) = [mm] e^{3x}(3log(x)+\bruch{1}{x}) [/mm] und [mm] e^{3x} [/mm] > 0 für alle positive x.
Also f'(x) < 0 [mm] \gdw 3log(x)+\bruch{1}{x} [/mm] < 0
Wir führen äquivalente Umformungen durch:
[mm] 3log(x)+\bruch{1}{x} [/mm] < 0
[mm] \gdw [/mm] 3log(x) < [mm] -\bruch{1}{x}
[/mm]
[mm] \gdw [/mm] -3log(x) > [mm] \bruch{1}{x}
[/mm]
[mm] \gdw e^{-3log(x)} [/mm] > [mm] e^{\bruch{1}{x}}, [/mm] da [mm] e^x [/mm] streng monoton steigend
[mm] \gdw (e^{log(x)})^{-3} [/mm] > [mm] e^{\bruch{1}{x}}
[/mm]
[mm] \gdw x^{-3} [/mm] > [mm] e^{\bruch{1}{x}}
[/mm]
Sei x = [mm] \bruch{1}{2}
[/mm]
[mm] \Rightarrow (\bruch{1}{2})^{-3} [/mm] = 8 und [mm] e^{\bruch{1}{\bruch{1}{2}}} [/mm] = [mm] e^2 [/mm] < [mm] 2,8^2 [/mm] = 7,84
[mm] \Rightarrow (\bruch{1}{2})^{-3} [/mm] = 8 > 7,84 = [mm] 2,8^2 [/mm] > [mm] e^2
[/mm]
Da es sich um äquivalente Umformungen handelt, erhalten wir, dass [mm] f'(\bruch{1}{2}) [/mm] < 0.
[mm] \Rightarrow x_1 [/mm] lok. Maximumstelle, [mm] x_2 [/mm] lokale Minimumstelle.
Da [mm] x_1, x_2 \in [/mm] (0,1) und log(x) < 0 für x [mm] \in [/mm] (0,1), folgt, dass [mm] f(x_1) [/mm] und [mm] f(x_2) [/mm] negative Vorzeichen haben.
[mm] \Box
[/mm]
Grüsse
Alexander
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:00 Fr 03.05.2013 | Autor: | M.Rex |
Hallo
> a) Bestimmen Sie die Anzahl der positiven Lösungen der
> Gleichung [mm]\bruch{1}{x}+3log(x)[/mm] = 0.
>
>
> Hallo zusammen,
>
> ich möchte gerne wissen, ob meine Lösungen so richtig
> sind?
>
> Beweis a)
>
> Definiere f(x) := [mm]\bruch{1}{x}[/mm] + 3log(x) für x [mm]\in \IR^+[/mm]
Ok
>
> Bestimme f'
>
> f'(x) = [mm]-\bruch{1}{x^2}+\bruch{3}{x}[/mm]
>
> Löse f'(x) = 0
>
> [mm]\gdw -\bruch{1}{x^2}+\bruch{3}{x}[/mm] = 0
> [mm]\gdw[/mm] -1+3x = 0
> [mm]\gdw[/mm] 3x = 1
> [mm]\gdw[/mm] x = [mm]\bruch{1}{3}[/mm]
Das ist auch ok.
>
> Es gelten: f'(x) < 0 für x < [mm]\bruch{1}{3}[/mm] und f'(x) > 0
> für x > [mm]\bruch{1}{3}[/mm]
>
> [mm]\Rightarrow[/mm] x = [mm]\bruch{1}{3}[/mm] ist lokale Minimumstelle.
Ok.
>
> Berechne [mm]f(\bruch{1}{3})[/mm] =
> [mm]\bruch{1}{\bruch{1}{3}}+3log(\bruch{1}{3})[/mm] =
> [mm]3+3log(\bruch{1}{3})[/mm] = 3-3log(3) = 3(1-log(3)) < 0, da
> log(3) > 1
>
> Weiterhin gilt: [mm]\limes_{x\downarrow 0}f(x)[/mm] =
> [mm]\limes_{x\downarrow 0}\bruch{1}{x}[/mm] + 3log(x) =
> [mm]\limes_{t\rightarrow +\infty}(t+3log(\bruch{1}{t})[/mm] =
> [mm]\limes_{t\rightarrow +\infty}(t-3log(t))[/mm] = [mm]+\infty,[/mm] da
> log(x) langsamer als [mm]\wurzel[n]{x}[/mm] gegen [mm]+\infty[/mm] für x
> gegen [mm]+\infty[/mm] geht. Insbesondere also auch als jede Potenz
> [mm]x^n[/mm] für jedes n [mm]\in \IN.[/mm]
>
> [mm]\Rightarrow[/mm] Da für x < [mm]\bruch{1}{3}[/mm] streng monoton falled
> und für x > [mm]\bruch{1}{3}[/mm] streng monoton steigend und
> [mm]f(\bruch{1}{3})[/mm] < 0 und [mm]\limes_{x\downarrow 0}f(x)[/mm] =
> [mm]+\infty[/mm] ist, folgt, dass f 2 positive Nullstellen hat.
> Insbesondere hat also die Gleichung genau 2 positive
> Lösungen.
>
> [mm]\Box[/mm]
Auch das ist ok.
> [...]
> Grüsse
> Alexander
Marius
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:04 Fr 03.05.2013 | Autor: | M.Rex |
Hallo
>
> b) Zeigen Sie, dass die Funktion f(x) = [mm]e^{3x}log(x)[/mm] auf
> [mm](0,+\infty)[/mm] genau ein lokales Maximum [mm]x_{max}[/mm] und genau ein
> lokales Minimum [mm]x_{min}[/mm] hat. Berechnen Sie das Vorzeichen
> von [mm]f(x_{min})[/mm] und [mm]f(x_{max}).[/mm]
>
>
>
> Beweis b)
>
> f(x) = [mm]e^{3x}log(x)[/mm]
>
> Bestimme f'
>
> f'(x) = [mm]3e^{3x}log(x)+\bruch{e^{3x}}{x}[/mm] =
> [mm]e^{3x}(3log(x)+\bruch{1}{x})[/mm]
>
> Es ist: f(1) = 0
>
> Sei x > 1. Dann: f'(x) = [mm]e^{3x}(3log(x)+\bruch{1}{x})[/mm] > 0
>
> [mm]\Rightarrow[/mm] Wenn es ein lok. Minimum/Maximum gibt, dann
> muss es im Intervall (0;1) liegen, da f auf [mm](1,+\infty)[/mm]
> streng monoton steigend, und f'(1) [mm]\not=[/mm] 0.
>
> Es gelten: [mm]\limes_{x\downarrow 0}f(x)[/mm] = [mm]\limes_{x\downarrow 0}e^{3x}log(x)[/mm]
> = [mm]-\infty[/mm]
> [mm]\limes_{x\rightarrow +\infty}f(x)[/mm] = [mm]\limes_{x\rightarrow +\infty}e^{3x}log(x)[/mm]
> = [mm]+\infty[/mm]
>
> Aus Teil a) wissen wir, dass [mm]\bruch{1}{x}+3log(x)[/mm] = 0 genau
> 2 positive Lösungen besitzt.
> Mithin folgt, dass f'(x) = [mm]e^{3x}(3log(x)+\bruch{1}{x})[/mm]
> genau 2 Nullstellen hat, da x [mm]\in (0,+\infty).[/mm]
> Also hat f
> 2 mögliche Extremstellen bzw. Sattelpunkte. Bezeichne mit
> [mm]x_1, x_2[/mm] die möglichen Extremstellen/Sattelpunkte von f,
> wobei [mm]x_1[/mm] < [mm]x_2.[/mm]
> Es ist möglich die Konstellationen von Extremstellen und
> Sattelpunkten einzuschränken, unter der Beachtung der
> bisherigen Kenntnisse:
>
> (i) [mm]\limes_{x\downarrow 0}f(x)[/mm] = [mm]-\infty[/mm]
> (ii) [mm]\limes_{x\rightarrow +\infty}f(x)[/mm] = [mm]+\infty[/mm]
> (iii) f(1) = 0
> (iv) f streng monoton wachsend auf [mm](1,+\infty)[/mm]
>
> Möglich sind also:
> - 2 Sattelpunkte mit jeweils rechts-links-Wechsel
> - [mm]x_1[/mm] lok. Maximumstelle, [mm]x_2[/mm] lokale Minimumstelle
>
> Ausgeschlossen sind:
>
> - 1 Extremstelle & 1 Sattelpunkte
> - [mm]x_1[/mm] lok. Minimumstelle, [mm]x_2[/mm] lokale Maximumstelle
> - 2 Sattelpunkte mit anderen Richtungswechseln,
>
> da mind. eine der Bedingungen (i) bis (iv) verletzt sind.
>
> Bei 2 Sattelpunkten mit jeweils rechts-links-Wechsel, muss
> auf (0,1) monoton steigend sein.
> Es reicht daher zu zeigen, dass f'(x) < 0 für ein x [mm]\in[/mm]
> (0,1) ist, um daraus zu schließen, dass [mm]x_1[/mm] lok.
> Maximumstelle und [mm]x_2[/mm] lokale Minimumstelle sind.
>
> Es gilt: f'(x) = [mm]e^{3x}(3log(x)+\bruch{1}{x})[/mm] und [mm]e^{3x}[/mm] >
> 0 für alle positive x.
> Also f'(x) < 0 [mm]\gdw 3log(x)+\bruch{1}{x}[/mm] < 0
>
> Wir führen äquivalente Umformungen durch:
>
> [mm]3log(x)+\bruch{1}{x}[/mm] < 0
> [mm]\gdw[/mm] 3log(x) < [mm]-\bruch{1}{x}[/mm]
> [mm]\gdw[/mm] -3log(x) > [mm]\bruch{1}{x}[/mm]
> [mm]\gdw e^{-3log(x)}[/mm] > [mm]e^{\bruch{1}{x}},[/mm] da [mm]e^x[/mm] streng
> monoton steigend
> [mm]\gdw (e^{log(x)})^{-3}[/mm] > [mm]e^{\bruch{1}{x}}[/mm]
> [mm]\gdw x^{-3}[/mm] > [mm]e^{\bruch{1}{x}}[/mm]
>
> Sei x = [mm]\bruch{1}{2}[/mm]
>
> [mm]\Rightarrow (\bruch{1}{2})^{-3}[/mm] = 8 und
> [mm]e^{\bruch{1}{\bruch{1}{2}}}[/mm] = [mm]e^2[/mm] < [mm]2,8^2[/mm] = 7,84
> [mm]\Rightarrow (\bruch{1}{2})^{-3}[/mm] = 8 > 7,84 = [mm]2,8^2[/mm] > [mm]e^2[/mm]
>
> Da es sich um äquivalente Umformungen handelt, erhalten
> wir, dass [mm]f'(\bruch{1}{2})[/mm] < 0.
> [mm]\Rightarrow x_1[/mm] lok. Maximumstelle, [mm]x_2[/mm] lokale
> Minimumstelle.
> Da [mm]x_1, x_2 \in[/mm] (0,1) und log(x) < 0 für x [mm]\in[/mm] (0,1),
> folgt, dass [mm]f(x_1)[/mm] und [mm]f(x_2)[/mm] negative Vorzeichen haben.
>
> [mm]\Box[/mm]
>
Auch das ist sehr schön. Sehr elegant und alles soweit korrekt.
> Grüsse
> Alexander
Marius
|
|
|
|
|
Ok, ich danke dir.
Grüsse
Alexander
|
|
|
|