www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Maximum-Likelihood
Maximum-Likelihood < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Mi 12.07.2017
Autor: mimo1

Aufgabe
Es seien [mm] X_1,...,X_n [/mm] i.i.d Zufallsvariablen mit Verteilung [mm] P_{\theta} [/mm] zu einem unbekannten Parameter [mm] \theta \in\IN. [/mm] Für alle [mm] \theta\in\IN [/mm] sei dabei [mm] P_{\theta} [/mm] die Laplace Verteilung auf der Menge [mm] \{1,...,\theta\}. [/mm]

a) ZU einer Beobachtung [mm] (x_1,...,x_n) \in\IN^n [/mm] bestimme man einen Schätzwert [mm] T(x_1,...,x_n) [/mm] für [mm] \theta [/mm] nach dem Maximum-Likelihood-Methode.

b) Man berechne [mm] E(T(X_1)). [/mm] Ist der Schätzer [mm] T(X_1) [/mm] erwartungstreu für [mm] \theta? [/mm]

Guten Abend,

zu a) da Laplace Verteilung gilt für die Likelihoodfkt.
[mm] L(X_1,...,X_n|\theta)=\begin{cases} \bruch{1}{(\theta-1)^n}, & \mbox{für } \theta\in \{1,...,\theta\} \mbox{} \\ 0, & \mbox{sonst } \mbox{ } \end{cases} [/mm]

Da die Fkt. monoton fällt muss der Schätzer [mm] \hat{\theta}=max\{X_1,...,X_n\} [/mm]

b) [mm] E(T(X_1))=\integral_{1}^{\theta}x\bruch{1}{\theta}=\bruch{1}{2}(\theta+1) [/mm]

Stimmt, soweit alles? Vielen Dank im Voraus.

        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Do 13.07.2017
Autor: luis52

Moin,

> Es seien [mm]X_1,...,X_n[/mm] i.i.d Zufallsvariablen mit Verteilung
> [mm]P_{\theta}[/mm] zu einem unbekannten Parameter [mm]\theta \in\IN.[/mm]
> Für alle [mm]\theta\in\IN[/mm] sei dabei [mm]P_{\theta}[/mm] die Laplace
> Verteilung auf der Menge [mm]\{1,...,\theta\}.[/mm]
>
> a) ZU einer Beobachtung [mm](x_1,...,x_n) \in\IN^n[/mm] bestimme man
> einen Schätzwert [mm]T(x_1,...,x_n)[/mm] für [mm]\theta[/mm] nach dem
> Maximum-Likelihood-Methode.
>  
> b) Man berechne [mm]E(T(X_1)).[/mm] Ist der Schätzer [mm]T(X_1)[/mm]
> erwartungstreu für [mm]\theta?[/mm]



>  Guten Abend,
>  
> zu a) da Laplace Verteilung gilt für die Likelihoodfkt.
>  [mm]L(X_1,...,X_n|\theta)=\begin{cases} \bruch{1}{(\theta-1)^n}, & \mbox{für } \theta\in \{1,...,\theta\} \mbox{} \\ 0, & \mbox{sonst } \mbox{ } \end{cases}[/mm]

[notok]
In der Likelihoodfunktion sehe ich keinerlei Abhaengigkeit von [mm] $X_1,\dots,X_n$. [/mm]
Wie kommst du auf [mm] $\bruch{1}{(\theta-1)^n}$? [/mm]
Die Schreibweise [mm] $\theta\in \{1,...,\theta\}$ [/mm] ergibt keinen Sinn.

>  
> Da die Fkt. monoton fällt muss der Schätzer  [mm]\hat{\theta}=max\{X_1,...,X_n\}[/mm]

Verstehe ich nicht.

>  
> b)
> [mm]E(T(X_1))=\integral_{1}^{\theta}x\bruch{1}{\theta}=\bruch{1}{2}(\theta+1)[/mm]

[notok] [mm] $T(X_1)$ [/mm] ist diskret verteilt.
Wenn schon falsch, dann korrekt falsch: [mm] $\integral_{1}^{\theta}x\bruch{1}{\theta}\,\red{dx}$. [/mm]



Bezug
                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Do 13.07.2017
Autor: mimo1

Hallo,

ich meinte natürlich [mm] x_i\in\{1,...,\theta\}. [/mm] (Das lag wahrscheinlich an der späten Uhrzeit.)

Ich habe mir folgend überlegt, dass die Dichte der Gleichverteilung folgend definiert ist

[mm] f(x)=\begin{cases} \bruch{1}{b-a}, & \mbox{für } a\le x\le b \mbox{ } \\ 0, & \mbox{sonst } \mbox{ } \end{cases} [/mm]

also haben wir in unserem Fall, wenn ich das Intervall  [mm] [1,\theta] [/mm] (ich bin mir nicht sicher, ob ich es machen darf) nehme, folgende Dichtefunktion


[mm] f(x)=\begin{cases} \bruch{1}{\theta-1}, & \mbox{für } x\in \{1,...,\theta\}\\ 0, & \mbox{sonst } \mbox{ } \end{cases} [/mm]

dann haben wir für die Likelihoodfunktion

[mm] L(x_1,...,x_n|\theta)=\begin{cases} \bruch{1}{(\theta-1)^n}, & \mbox{für } x_i\in\{1,...,\theta\} \mbox{ } \\ 0, & \mbox{sonst } \mbox{ } \end{cases} [/mm]

oder ist das [mm] L=\bruch{1}{\theta^n}? [/mm]

b) dadurch das ich nicht [mm] T(X_1) [/mm] habe aus Teil a) kann ich da nciht weitermachen, oder?

also ich nehme mal  einfach [mm] E(T(X_1))=E(\bruch{1}{n}\summe_{i=1}^nX_1)=\bruch{1}{n}\summe_{i=1}^{n}E(X_1)=E(X_1) [/mm]

ich bin für jeden Tipp dankbar.

Bezug
                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Do 13.07.2017
Autor: luis52

Du bist hier vollkommen auf dem Holzweg. Es gibt naemlich zwei Gleichverteilungen, die stetige und die diskrete. Letztere wird auch Laplace-Verteilung genannt. Fuer  [mm] $\theta\in\IN$ [/mm] ist deren Wahrscheinlichkeitsfunktion gegeben durch:

$ [mm] P(X=x)=\begin{cases} \dfrac{1}{\theta}, & \mbox{für } x\in \{1,...,\theta\} \mbox{;} \\ 0, & \mbox{sonst.} \mbox{ } \end{cases}$ [/mm]


Bezug
                                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Do 13.07.2017
Autor: mimo1

heißt das, dass die Likelihoodfunktion am Ende die folgende ist:

[mm] L(x_1,...,x_n|\theta)=\summe_{i=1}^{n}P(X_i=x_i)=\bruch{n}{\theta}? [/mm]



Bezug
                                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Do 13.07.2017
Autor: luis52


> heißt das, dass die Likelihoodfunktion am Ende die
> folgende ist:
>  
> [mm]L(x_1,...,x_n|\theta)=\summe_{i=1}^{n}P(X_i=x_i)=\bruch{n}{\theta}?[/mm]
>  
>  

Nein.

Angenommen, es werden die Werte $3, 2, 5_$ beobachtet. Schreibe dafuer mal die Likelihoodfunktion auf.  



Bezug
                                                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Do 13.07.2017
Autor: mimo1

wäre dann für [mm] x_1=2, x_2=3, x_3=5 [/mm]
[mm] L(x_1,x_2,x_3|\theta)=P(X_1=2)*P(X_2=3)*P(X_3=5)=\bruch{1}{\theta^3} [/mm] die Likelihood-Funktion?

Bezug
                                                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Do 13.07.2017
Autor: luis52

Nein:

$ [mm] L(X_1,...,X_n|\theta)=\begin{cases} \dfrac{1}{\theta^3}, & \mbox{für } \theta\ge\max \{2,3,5\} \mbox{;} \\ 0, & \mbox{sonst. } \mbox{ } \end{cases} [/mm] $

Allgemein ist [mm] $\hat\theta=\max \{X_1,\dots,X_n\} [/mm] $ der ML-Schaetzer.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]