www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Maximum-Likelihood-Methode
Maximum-Likelihood-Methode < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 17.03.2007
Autor: ragsupporter

Aufgabe
Ein Merkmal X unterliegt einer diskreten Wahrscheinlichkeitsverteilung mit der Wahrscheinlichkeitsfunktion [mm] P(X=k) = (k-2)p^{2}(1-p)^{k-3} [/mm] für k=2,3,4,... . Weiterhin gilt für den Erwartungswert [mm] E(X) = \bruch{2+p}{p} [/mm]

a) Geben Sie mit Hilfe der MLM eine Schätzfunktion für den Parameter p an!
b) Ermitteln Sie einen Schätzer für den Parameter p mittels Momentenmethode!
c) Betimmen Sie mit Hilfe der in a) und b) gefundenen Schätzfunktionen aus der Stichprobe
95 43 23 52 20 74 83 18 konkrete Schätzwerte für p!

Hallo,

also ich habe für a und b den Ansatz... weiss dann aber nicht so recht wie ich weiterrechnen muss (umstellen nach p).

zu a) Maximum-Likelihood-Methode

[mm] L(x_1 ,...,x_n | \lambda ) = \produkt_{i=1}^{n} P(X=x_i) = \produkt_{i=1}^{n} (x_i - 2) p^2 (1-p)^{x_i - 3} |\ln [/mm]

ln um die exponenten rauszubekommen
daraus folgt:

[mm] \ln L(x_1 ,...,x_n | \lambda ) = ... [/mm]
--> hier komme ich nicht weiter

zu b.) Momentenmethode

[mm] \bruch {1}{n} \summe_{i=1}^{n} = m_1 = EX = \bruch {2+p}{p} [/mm]

weiss hier nicht so recht wie ich das auflösen muss.

bin über jede hilfe dankbar.

mfg markus

        
Bezug
Maximum-Likelihood-Methode: Tipps
Status: (Antwort) fertig Status 
Datum: 18:14 Sa 17.03.2007
Autor: luis52

Moin Markus,

du kannst die Likelihoodfunktion noch etwas deutlicher schreiben:

[mm] $L(p)=\{\prod(x_i-2)\}p^{2n}(1-p)^{\sum x_i-3n}$. [/mm]

Beachte, dass der erste Faktor nicht von $p$ abhaengt...

Zu b) Setze [mm] $(2+\hat p)/\hat p=\bar [/mm] x$.
                  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]