www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Maximum-Likelihood-Methode
Maximum-Likelihood-Methode < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Methode: Supremum?
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 08.01.2016
Autor: Mia90

Hallo,

meine Frage bezieht sich auf die Maximum-Likelihood Methode zur Bestimmung von Punktschätzern. Ich denke, ich habe das grundlegende Prinzip verstanden:
Man hat ja zu jeder denkbaren Stichprobenrealisation eine eigene Likelihood Funktion. Und ein Schätzer ist genau dann ein Likelihood-Schätzer, wenn er zu jeder Stichprobenrealisation, den Wert schätzt, bei dem die entsprechende Likelihood-Funktion ihr Maximum annimmt. Jetzt sieht aber formal diese Bedingung so aus: [mm] L_x(T(x))=sup(L_x(\gamma)) [/mm] (mit [mm] L_x [/mm] als Likelihood-Funktion und [mm] \gamma [/mm] als zu schätzender Parameter und das Supremum geht über den ganzen Parameterraum).

Mir ist nicht klar, warum in dieser Bedingung supremum steht und nicht Maximum!Hat das etwas mit den Rändern des Parameterraums zu tun?

Kann mir da jemand weiterhelfen?
Mia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 08.01.2016
Autor: luis52

Moin Mia90

[willkommenmr]

>  
> Mir ist nicht klar, warum in dieser Bedingung supremum
> steht und nicht Maximum!Hat das etwas mit den Rändern des
> Parameterraums zu tun?

Manchmal ja. Das Supremum nimmt man gern, wenn man sich so allgemein wie moeglich ausdruecken will. Jedes (lokale) Maximum ist ein (lokales) Supremum, aber nicht umkehrt.



Bezug
                
Bezug
Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Fr 15.01.2016
Autor: Mia90

Hallo,

sorry, dass ich nach so langer Zeit nochmal nachfrage.

Aber was wäre denn ein Beispiel dafür, dass es notwendig macht, bei der Bedingung für den Maximum-Likelihood Schätzer das Supremum zu verwenden, anstatt das Maximum?

Gruß Mia!

Bezug
                        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 17.01.2016
Autor: luis52


>  
> Aber was wäre denn ein Beispiel dafür, dass es notwendig
> macht, bei der Bedingung für den Maximum-Likelihood
> Schätzer das Supremum zu verwenden, anstatt das Maximum?
>  


Schau dir mal Beispiel 5 []hier an. Nimm aber an, dass gilt [mm] $f(x\mid\theta)=1/\theta$ [/mm] fuer  [mm] $0\le x\red{<}\theta$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]